摘要:
Fibers for diamond-impregnated cutting tools and their associated methods for manufacture and use are described. A matrix is formed that contains fibers made from carbon, glass, ceramic, polymer, and the like. The matrix is then sintered to form a cutting portion of a drill bit. The type and concentration of the fibers can be modified to control the tensile strength and the erosion rate of the matrix to optimize the cutting performance of the tools. Additionally, the fibers may be added to the cutting section to weaken the structure and allow higher modulus binders to be used for the cutting tools at a lower cost, allowing the amount of fibers to be tailored to retain the diamonds in the cutting portion for the desired amount. As the cutting portion erodes, the fibers may also increase the lubricity at the face of the cutting portion.
摘要:
A method of manufacturing an axisymmetric component made of a composite material having a metallic matrix is described in which at least one ceramic fiber and at least one wire of the metal which is to constitute the matrix are wound simultaneously side by side to form a number of layers on a suitably shaped mandrel and in such a manner as to ensure absence of contact between the fiber turns of each individual layer and between the fiber turns of adjacent layers, and the formed layers are subsequently subjected to hot isostatic compaction. The ceramic fiber may be of the silicon carbide type and the metal wire forming the matrix may be of titanium or titanium-alloy.
摘要:
Molybdenum base composite materials having high tensile strength and oxidon resistance at high temperatures are produced by piling in parallel and embedding silicon carbide fibers containing 0.01-20% by weight of free carbon, which have been produced by the specific method already disclosed in U.S. patent application Ser. No. 677,960, in molybdenum base metallic powders and by compressing and sintering the assembly.
摘要:
Channel boxes for a boiling water reactor and methods of manufacture thereof are provided. The channel box comprises a substrate and a first layer. The substrate comprises a tubular shape. The substrate comprises silicon carbide fibers. The first layer is deposited on a first surface of the substrate and the first layer comprises a corrosion resistant metallic composition.
摘要:
The present invention is related to a family of materials that may act as a replacement for lead in applications where the high density of lead is important, but where the toxicity of lead is undesirable. The present invention more particularly provides a high density material comprising tungsten, fiber and binder. Methods and compositions of such materials and applications thereof are disclosed herein.
摘要:
Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based cladding alloy are provided. The cladding is preferably an alloy having a niobium and titanium base according to the expression:Nb.sub.balance -Ti.sub.32-48 -Al.sub.8-16 -Cr.sub.2-12,provided that the sum (Al+Cr).ltoreq.22 a/o, and where Ti is less than 37 a/o the sum (Al+Cr).ltoreq.16a/o.The reinforcement may be in the form of plates, sheets or rods of the higher strength, higher temperature niobium based reinforcing alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
摘要翻译:提供了具有较高密度,更强的增强铌基合金嵌入较低密度的复合结构,较低强度的铌基包层合金。 根据以下表达式,包层优选为具有铌和钛基的合金:Nbbalance-Ti32-48-Al8-16-Cr2-12,条件是总和(Al + Cr)= 22 a / o,其中 Ti小于37 a / o的总和(Al + Cr) = 16a / o。 加强件可以是较高强度,较高温度的铌基增强合金的板,片或棒的形式。 在基质和强化物中都存在相同的晶体形式,特别是体心立方晶体形式。
摘要:
A composite structural ceramic article and method of fabrication thereof. The article of the invention is specifically designed for use in high temperature, corrosive and erosive environments such as those found in heat engines, heat exchangers, stationary power equipments and industrial process equipments. The article comprises a porous carbon fibrous substrate or other suitable high temperature fibrous substrate which may include: a pyrolytic carbon or appropriate chemical vapor deposited sheath formed about each fiber of the substrate; a chemically vapor deposited metallic carbide, oxide, boride or nitride coating over the coated fibers of the substrate; and an impermeable metallic carbide, oxide, boride or nitride outer protective layer formed about the entire periphery of the coated substrate. In accordance with the method of the invention, the metallic coating is applied to the fibers in such a manner such that internal porosity of the article is precisely controlled and a flaw resistant, tough, non-catastrophic failing structural ceramic body is formed.
摘要:
Fibers for diamond-impregnated cutting tools and their associated methods for manufacture and use are described. A matrix is formed that contains fibers made from carbon, glass, ceramic, polymer, and the like. The matrix is then sintered to form a cutting portion of a drill bit. The type and concentration of the fibers can be modified to control the tensile strength and the erosion rate of the matrix to optimize the cutting performance of the tools. Additionally, the fibers may be added to the cutting section to weaken the structure and allow higher modulus binders to be used for the cutting tools at a lower cost, allowing the amount of fibers to be tailored to retain the diamonds in the cutting portion for the desired amount. As the cutting portion erodes, the fibers may also increase the lubricity at the face of the cutting portion.
摘要:
Fibers for diamond-impregnated cutting tools and their associated methods for manufacture and use are described. A matrix is formed that contains fibers made from carbon, glass, ceramic, polymer, and the like. The matrix is then sintered to form a cutting portion of a drill bit. The type and concentration of the fibers can be modified to control the tensile strength and the erosion rate of the matrix to optimize the cutting performance of the tools. Additionally, the fibers may be added to the cutting section to weaken the structure and allow higher modulus binders to be used for the cutting tools at a lower cost, allowing the amount of fibers to be tailored to retain the diamonds in the cutting portion for the desired amount. As the cutting portion erodes, the fibers may also increase the lubricity at the face of the cutting portion.
摘要:
A method of forming bulk metallic glass engineering materials, and more particularly a method for forming coarsening microstructures within said engineering materials is provided. Specifically, the method forms ‘designed composites’ by introducing ‘soft’ elastic/plastic inhomogeneities in a metallic glass matrix to initiate local shear banding around the inhomogeneity, and matching of microstructural length scales (for example, L and S) to the characteristic length scale RP (for plastic shielding of an opening crack tip) to limit shear band extension, suppress shear band opening, and avoid crack development.