Abstract:
A method of operating a fixed-bed gasifier includes positioning a tapping element at a first point above a bed of fuel particles, lowering the tapping element into the fuel particles along a first linear path to form a first linear passage in the fuel particles, raising the tapping element to retract the tapping element from the fuel particles along the first linear path so that the tapping element exits the fuel particles from the first linear passage, positioning the tapping element at a second point above the fuel particles, lowering the tapping element into the fuel particles along a second linear path to form a second linear passage in the fuel particles, and raising the tapping element to retract the tapping element from the fuel particles along the second linear path so that the tapping element exits the fuel particles from the second linear passage.
Abstract:
A gasification system method and apparatus to convert a feed stream containing at least some organic material into synthesis gas having a first region, a second region, a gas solid separator, and a means for controlling the flow of material from the first region to the second region. The feed stream is introduced into the system, and the feed stream is partially oxidized in the first region thereby creating a solid material and a gas material. The method further includes the steps of separating at least a portion of the solid material from the gas material with the gas solid separator, controlling the flow of the solid material into the second region from the first region, and heating the solid material in the second region with an electrical means.
Abstract:
A gasifier and gasifier system based on the gasifier, which contains as a major component, a novel feed system for feeding organic materials into the burn pile of the gasifier. The gasifier feed system is a horizontal auger driven feed system that feeds directly through a ceramic elbow into the furnace without having to auger the feed through significant vertical elevations.
Abstract:
A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.
Abstract:
A gasification shaft in the reactor collects a loose heap of solid waste matter on a support at the bottom of the shaft in the form of a triangular hollow prism having longitudinal edges leaving gaps between it and the walls of the shaft. The support can be swung about its axis to open the gaps wider and shake the solid material. Oxygen containing gas is supplied at the top of the shaft and supports partial combustion of the solid material. Gas and partly burned solid material pass down through the variable gaps into a combination chamber below the shaft into which more oxygen containing gas is fed both from above through the prismatic support and from below through an ash chamber at the bottom of the combustion chamber after passing through lower gaps between an emptying device of triangular prism shape, below which is an ash removal chamber. The additional oxygen supplied from below into the combustion chamber assures the complete combustion of the solid material so that treatment of the ash outside of the reactor becomes unnecessary.
Abstract:
A first stage, sub-stoichiometric reaction chamber (12) reacts a carbon-based fuel with an oxygen-carrying gas to produce a combustible gas, heat, and residual ash. A rectangular grate (B) supports a fuel pile (34) in the reaction chamber. A fuel supply (20) continuously supplies the carbon-based fuel from overhead in sufficient quantity to maintain the desired pile configuration with minimum particle entrainment in the generated gas. A fabric chute (36) may be provided to further limit particulate entrainment in the generated combustible gas. A temperature sensor (78) monitors temperature at the grate or another preselected reaction condition. When the preselected condition is sensed, the grates are reciprocated to step residual ash to an ash removal conveyor (74). Nozzles (82) combust a portion of the generated gas to inhibit condensation of vaporized constituents. A second stage, combustion chamber (C) completely combusts the generated gas to derive useful work therefrom.
Abstract:
The present invention is directed to a biomass gasifier combustor which operates by gasification and combustion of the biomass to produce a clean effluent gas which can be used directly for grain drying or other applications where thermal energy is required. The biomass gasifier combustor burns crop residue clean enough so that the combustion gases can be used directly for grain drying without the need for a heat exchanger to isolate the combustion gases from the drying air. The biomass gasifier combustor includes a screw feeder tube having a screw feeder disposed therein. The screw feeder forces the biomass into a first combustion chamber. Primary combustion of the biomass produces a first combustion gas. A venturi gas pump creates a negative pressure region in the gasifier, drawing the first combustion gas into a second combustion chamber. An air passage is provided having a cross sectional area which increases the resistance to the flow of the first combustion gas into the second gas combustion chamber. A secondary combustion takes place, completely oxidizing the organics in the primary combustion gas and producing a clean exhaust gas which can be used directly for grain or other drying purposes. An improved first chamber includes a manifold section for preventing the biomass from escaping into the secondary combustion chamber, and a variable height grate for allowing the ash product to fall through the holes in the variable height grate. A damper may be provided at the air inlets to control the flow rate of secondary air. A damper may be placed on the exhaust eductor or venturi pump for regulating the thermal output of the system. The level of biomass in the first combustion chamber may also be monitored and automatically controlled.
Abstract:
The invention concerns a gasification device for the creation of a flammable gas from a solid, comprising a gasification zone, in which the solid can be filled through a fill opening, an oxidation zone for the oxidation of the resulting gas, which is connected to the gasification zone to conduct the gas created in the gasification zone into the oxidation zone. According to the invention, the efficiency of the gasification device is improved in that the gasification zone is divided into several neighboring gasification sectors, a temperature metering unit is present that is configured to measure the temperature prevailing in each gasification sector, and the temperature metering unit is coupled by signal technology to a control unit, which is coupled to an air supply device by signal technology, that is designed to supply air individually to each gasification sector, and the amount of air supplied to each gasification sector per unit of time is dependent on the temperature measured therein.
Abstract:
A method for optimizing the operation of a gas generator having a housing part, at the upper end of which are elements for supplying fuel to a fuel compartment inside the housing part. The fuel descends by gravity onto a grate, a combustion zone being formed above the grate, with elements for supplying gasification gas thereto. The grate includes two concentrically arranged first and second grate parts, at least one of which grate part can be turned around an axis of rotation passing through a joint centre. The grate parts can be moved in the direction of the axis of rotation towards each other into their mutually interlocking position, and away from each other, into a position partly or completely out of the interlocking position. The grate parts move with respect to each other to regulate the flow of gases through the grate and/or the removal of ash.
Abstract:
A downdraft gasifier (1) has an oxidant inlet (3), a biomass injector (2), a grate (9), a gas exit port (7), and an ash removal system (11). A sensor (10) maintains the height of the bed and a rotating paddle (5) maintains the top of the bed (4) at an even height. The grate arrangement (9) is preferably a sliding grate arrangement which actively moves ash material through the grate. An in-bed oxidant distributor (6) injects oxidant within the bed.