Abstract:
The present invention provides a bio-electrode composition comprising a polymer compound having a repeating unit A that contains silver salt of fluorosulfonic acid, silver salt of fluorosulfonimide, or silver salt of fluorosulfonamide. This can form a living body contact layer for a bio-electrode with excellent electric conductivity, biocompatibility and light weight, which can be manufactured at low cost and does not cause large lowering of the electric conductivity even when it is wetted with water or dried. The present invention also provides a bio-electrode in which the living body contact layer is formed from the bio-electrode composition and a method for manufacturing the bio-electrode.
Abstract:
A resin composition includes a resin A, a resin C, and a solvent. The resin A includes a sulfonic-acid-group-containing structural unit in an amount exceeding 5 mol % with respect to total structural units included in the resin A. The resin A has a content of a fluorine atom of 30 mass % or less with respect to a total mass of the resin A. The resin C includes a fluorine atom in a larger content per unit mass than the content of a fluorine atom per unit mass in the resin A. A content of the resin A in the resin composition is lower than a content of the resin C in the resin composition in terms of mass.
Abstract:
A preferred embodiment of the present invention can provide an optical material composition that includes an episulfide compound that is represented by formula (1) and a polymerizable compound that is different from the episulfide compound that is represented by formula (1). The optical material composition makes it possible to stably and inexpensively store the polymerizable compound and to achieve an optical material that has a favorable hue and that has favorable lightfastness and transparency. (In the formula, m is an integer from 0 to 4, and n is an integer from 0 to 2.)
Abstract:
The present invention discloses a polymer containing 1,2,5-benzoselenadiazole-N—R1-5,6-dicarboxylic acid imide, and a preparation method and use thereof. The conjugated polymer prepared by the present invention has fluorescence, and a relatively wide absorption of sunlight, and thus it can be used for manufacture of an active layer for a polymer light-emitting diode device, a polymer field-effect transistor and a polymer solar cell.
Abstract:
A compound represented by formula: is disclosed. R is hydrogen or alkyl; X is alkylene; Y is a bond, ether, thioether, amine, amide, ester, thioester, carbonate, thiocarbonate, carbamate, thiocarbamate, urea, thiourea, alkylene, arylalkylene, alkylarylene, or arylene, wherein alkylene, arylalkylene, alkylarylene, and arylene are optionally at least one of interrupted or terminated by at least one of an ether, thioether, amine, amide, ester, thioester, carbonate, thiocarbonate, carbamate, thiocarbamate, urea, or thiourea; and Z is an acrylate, a methacrylate, an acrylamide, a methacrylamide, a styrenyl, or a terminal alkenylene having at least three carbon atoms. A composition including the compound, and a method of determining the degree of cure of a curable polymeric resin are also disclosed.
Abstract:
Disclosed is a low VOC coating additive employing a water-dispersible polymer, a water insoluble plasticizer, cyclohexanedimethanol, and optionally an amphiphilic component. The additive can be added to a coating to improve at least one performance characteristics of the coating, such as, wet-edge time, open time, scrub resistance, wet adhesion, and water resistance.
Abstract:
Disclosed herein is an organic semiconductor compound thin film. The organic semiconductor compound thin film includes a conjugated organic material including an unshared electron pair-containing sulfur or nitrogen atom and exhibiting semiconductivity, and a polymeric organic acid bonded to the conjugated organic material through hydrogen bonding and protonation. The organic semiconductor compound thin film exhibits high electric charge mobility and interlayer solvent resistance to facilitate formation of a stack structure despite use of a wet process.
Abstract:
A stimulation-responsive material comprises regions of pH-responsive polymer and regions of temperature-responsive polymer, the regions existing at different locations.
Abstract:
Provided is a copolymer aqueous solution which exerts a high calcium carbonate-deposition suppressing ability even under high hardness condition, has excellent storage stability, and suppresses coloring of a detergent to yellow even when used as a detergent raw material. The water-soluble copolymer aqueous solution includes a water-soluble copolymer and hydrogen peroxide as essential components, in which: the water-soluble copolymer at least includes, as its structure, a structural unit originating from a monoethylenic unsaturated dicarboxylic acid (or dicarboxylate) monomer having 4 to 6 carbon atoms or its anhydride (a) at 30 to 60 mol %, a structural unit originating from a monoethylenic unsaturated monocarboxylic acid (or monocarboxylate) monomer having 3 to 8 carbon atoms (b), and a structural unit originating from a monoethylenic unsaturated monomer having a sulfonic (or sulfonate) group (c); the water-soluble copolymer has a weight average molecular weight of 1,000 or more and 50,000 or less; the water-soluble copolymer aqueous solution has a weight ratio of the hydrogen peroxide of 10 ppm to 50,000 ppm with respect to a solid content of the water-soluble copolymer aqueous solution; and the water-soluble copolymer aqueous solution has a weight ratio of water of 33% to 99%.