Abstract:
An object of the present invention is to provide a conductive polymer composite which has good filterability and good film forming property by spin coating and, when a film is formed, can form a conductive film having high transparency and good flatness property. It is provided a conductive polymer composite comprising (A) a π-conjugated polymer, and (B) a dopant polymer containing a repeating unit “a” represented by the following general formula (1), and having a weight average molecular weight in the range of 1,000 to 500,000: wherein, R1, Z1, Rf1, and “a” are as defined in the specification.
Abstract:
The invention provides for a process for removing thiocarbonylthio groups from polymer prepared by RAFT polymerization, the process comprising: introducing into a flow reactor a solution comprising the RAFT polymer in solvent; and promoting a reaction within the flow reactor that removes the thiocarbonylthio groups so as to form a solution that flows out of the reactor comprising the RAFT polymer absent the thiocarbonylthio groups.
Abstract:
New polymeric dielectric materials are provided for high power capacitors, especially for mobile and weapons applications. These materials utilize aminoplast crosslinking in their polymeric structure. The aminoplast crosslinking ability of these materials allows them to be customized for a number of applications, but also allows the materials to have a higher crosslinking density, leading to higher dielectric constants, higher breakdown voltage, and higher thermal stability. These materials can be incorporated into current capacitor manufacturing schemes with little to no processing changes.
Abstract:
The invention provides for a process for removing thiocarbonylthio groups from polymer prepared by RAFT polymerisation, the process comprising:introducing into a flow reactor a solution comprising the RAFT polymer in solvent; and promoting a reaction within the flow reactor that removes the thiocarbonylthio groups so as to form a solution that flows out of the reactor comprising the RAFT polymer absent the thiocarbonylthio groups.
Abstract:
The invention relates to polymeric resin blends containing polyelectrolyte resins blended into a polymer or copolymer matrix. Specifically, the polyelectrolyte resins are (co)polymers without hydrolyzable groups. The matrix polymer is a tough, and highly chemical-resistant (co)polymer, preferably a fluoropolymer. The polymeric resin blend is useful for forming films, and especially films useful for MEAs for use in fuel cells.
Abstract:
A novel anion exchange polymer is provided. A method of making the anion exchange polymer includes reacting a tertiary amine, an acid inhibitor and a polyepoxide to form a quaternary ammonium monomer and polymerizing the quaternary ammonium monomer in the presence of a catalyst. The exchange polymer is prepared without using alkyl halides and can be used to make improved ion exchange materials that are chemically resistant and non-fouling.
Abstract:
The present invention relates to compositions comprising polymers whose solubility characteristics can be changed by incubation and particularly ploy (hydroxyalkyl (meth) acrylamide mono/di-lactate) interpolymers. Another aspect of this invention is the application of such temperature sensitive polymers as release systems of biologically active compounds. The polymers of the present invention comprise monomers, which have modifiable functionality. The functionality of the monomers can for example be modified by the presence of hydrolysable groups. The modification is effected by the incubation, leading to a change of the water solubility characteristics of the polymer. The polymers used in the present invention contain hydrolysable chemical groups. As a result the polymer's solution characteristics, specifically its lower critical solution temperature (LCST), change upon incubation.
Abstract:
The present invention relates to compositions comprising polymers whose solubility characteristics can be changed by incubation and particularly poly (N-(2-hydroxypropyl)methacrylamide mono/di-lactate) interpolymers. Another aspect of this invention is the application of such temperature sensitive polymers as release systems of biologically active compounds. The polymers of the present invention, comprise monomers which have modifiable functionality. The functionality of the monomers can for example be modified by the presence of hydrolysable groups. The modification is effected by the incubation, leading to a change of the water solubility characteristics of the polymer. The polymers used in the present invention contain hydrolysable chemical groups. As a result the polymer's solution characteristics, specifically its lower critical solution temperature (LCST), change upon incubation.
Abstract:
A method for producing homopolymers and copolymers from amido-sulfonic acid or salt containing monomers in the presence of high energy mechanical mixing utilizing a final stage polymerization temperature of from about 200.degree. F. to below the degradation temperature of the monomer. The process produces a solid homopolymer or copolymer which can be utilized as fluid loss agents.