摘要:
An apparatus includes a ceramic matrix composite (CMC) component and an interface coating on the CMC component, wherein the interface coating includes a layer of at least one of the following compositions: 40-50 wt % Nb, 28-42 wt % Al, 4-15 wt % Cr, 1-2 wt % Si; 90-92 wt % Mo, 4-5 wt % Si, 4-5 wt % B; or 60-80 wt % V, 20-30 wt % Cr, 2-15 wt % Ti.
摘要:
A honeycomb filter including a catalyst-carrying article, and an outer peripheral coat layer disposed on an outer peripheral face of the catalyst carrying article, wherein an amount of the catalyst loaded in the outer peripheral coat layer at a position 50 μm or more apart from a boundary face between the catalyst-carrying article and the outer peripheral coat layer is 5 mass % or less when a measurement piece having a cross section where a boundary portion between the catalyst-carrying article and the outer peripheral coat layer can be observed and being obtained by embedding a resin in the boundary portion in the cross section is measured by an energy dispersive fluorescent X-ray analysis using a scanning electron microscope.
摘要:
A conductor paste for a ceramic substrate contains a) a conductive metal powder comprising a silver powder and a palladium powder; b) a glass powder; and c) an organic solvent, wherein the conductive metal powder has an average particle diameter of not more than 1.2 μm, and the glass powder is a Bi2O3—SiO2—B2O3 type glass powder, and the content of the glass powder is in a range of from 1 to 6 wt % based on the weight of the paste.
摘要:
A conductor paste for a ceramic substrate contains a) a conductive metal powder comprising a silver powder and a palladium powder; b) a glass powder; and c) an organic solvent, wherein the conductive metal powder has an average particle diameter of not more than 1.2 μm, and the glass powder is a Bi2O3—SiO2—B2O3 type glass powder, and the content of the glass powder is in a range of from 1 to 6 wt % based on the weight of the paste.
摘要:
A conductor paste for a ceramic substrate contains a) a conductive metal powder comprising a silver powder and a palladium powder; b) a glass powder; and c) an organic solvent, wherein the conductive metal powder has an average particle diameter of not more than 1.2 μm, and the glass powder is a Bi2O3—SiO2—B2O3 type glass powder, and the content of the glass powder is in a range of from 1 to 6 wt % based on the weight of the paste.
摘要:
Methods for preparing nanocomposites with thermal properties modified by powder size below 100 nanometers. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated, un-coated, whisker type fillers are taught. Thermal nanocomposite layers may be prepared on substrates.
摘要:
A method of treating zinc sulfide transmissive bodies includes using the same metal layer to treat multiple transmissive bodies, catalyzing the recrystallization of the bodies to remove defects from the bodies and forming multispectral zinc sulfide. The metal layer is brought into contact with one of the transmissive bodies. The transmissive body and the metal layer are then subjected to elevated temperature and pressure. The metal layer may include any of a variety of suitable metals, such as platinum, cobalt, silver, nickel, and/or copper. The metal layer may be a foil that is wrapped around the transmissive body. Alternatively the metal layer may be a rigid metal piece, for example being machined to fit the shape of the transmissive bodies. The reuse of the metal layer to treat multiple transmissive bodies reduces the cost of treating the transmissive bodies.
摘要:
Methods for discover of ceramic nanomaterial suitable for an application by preparing an array of first layer of electrodes and printing ceramic nanomaterial films on the electrodes. A second layer of electrodes is printed on the nanomaterial films of ceramics to form an electroded film array. The electroded film array is sintered. Properties of the sintered electroded film array are measured and one of the array elements with properties suited for the particular application is identified.
摘要:
Methods for preparing low resistivity nanocomposite layers that simultaneously offer optical clarity, wear resistance and superior functional performance. Nanofillers and a substance having a polymer are mixed. Both low-loaded and highly-loaded nanocomposites are included. Nanoscale coated and un-coated fillers may be used. Nanocomposite films may be coated on substrates.
摘要:
Biomedical nanocomposite implants having both low-loaded and highly-loaded nanocomposites. A matrix and nanofillers are provided wherein the nanofillers are dispersed in the matrix to form a composite. Nanoscale coated and un-coated fillers are used. Methods for preparing biomedical nanocomposite implants are also illustrated.