Abstract:
A coolant control device includes: first control means for, at warm-up of an internal combustion engine, circulating coolant in a first passage bypassing the engine and stopping coolant circulation in the second passage passing through the engine; second control means for, at engine warm-up and when the quantity of heat required by a heater core is smaller than or equal to a predetermined threshold, circulating coolant in the first passage while adjusting the flow rate of coolant circulating in the first passage and stopping coolant circulation in the second passage; and third control means for, at engine warm-up and when the required quantity of heat exceeds the predetermined threshold, circulating coolant in the first passage without decreasing the flow rate of coolant circulating in the first passage and circulating coolant in the second passage while adjusting the flow rate of coolant circulating in the second passage.
Abstract:
Methods and systems are provided for controlling an air conditioning system of a motor vehicle. In one example, a cabin of the vehicle may be heated firstly to a first temperature by flowing coolant to a heat exchanger, coolant may be diverted away from the heat exchanger and toward the engine in order to increase a temperature of the engine, and the coolant may then flow again to the heat exchanger in order to heat the cabin to a second temperature. An amount of fuel savings resulting from heating the engine by diverting coolant away from the heat exchanger may be displayed to an operator of the vehicle via a display device.
Abstract:
The present disclosure provides a vehicle control device including: a fluid circuit, mutually connecting an engine, a vehicle cabin interior heat exchanger for discharging heat into a vehicle cabin interior, and a heat discharging heat exchanger included in a refrigerant cycle in which a refrigerant is compressed and expanded by a compressor, and in which a fluid circulates; and a control unit for controlling the compressor and the engine such that, in a case in which engine warm-up operation ending conditions have not been established and in a case in which predetermined stopping conditions, other than the warm-up operation ending conditions, for stopping engine idling have been established, the compressor is operated while the engine is idling so as to release heat from the refrigerant from the heat discharging heat exchanger and to heat the fluid.
Abstract:
Systems and methods for providing heat to a passenger cabin of a hybrid vehicle that includes an internal combustion engine are presented. The systems and methods may selectively operate the internal combustion engine with one or more engine cylinders deactivated and may selectively flow coolant to one or more cylinders to improve passenger cabin heating in response to a request for passenger cabin heat.
Abstract:
A fluid heating system for a work vehicle includes a pressurized fluid circuit having a pump for providing pressurized fluid to the fluid circuit. A control module for controlling a first control device is in fluid communication with the fluid circuit, the first control device operable between a first position and a second position. The first position of the first control device permits a load sense pressure to be applied through the first control device, thereby preventing pressurized fluid from the pump flowing to a pressure return tank for heating the pressurized fluid. The second position of the first control device prevents the load sense pressure from being applied through the first control device, thereby permitting pressurized fluid from the pump flowing to a pressure return tank and resulting in heating of pressurized fluid of the fluid circuit.
Abstract:
The invention relates to valve system configurations for an active warm-up (AWU) system for an automobile to improve warm-up conditions without delaying cabin warm-up or defrost times. More specifically, the invention relates to a system for heating/cooling transmission fluid of an automobile by controlling the source of the heat exchange fluid for transferring heat to/from the transmission fluid during different start-up conditions using a series of various valves arranged in series intermediate a first heat exchanger associated with cabin warm-up/defrost of the passenger compartment and a second heat exchanger for transferring heat to/from the transmission fluid.
Abstract:
Methods and systems are provided for selectively increasing an amount of waste heat generated by an idling engine. An engine output is increased while a transmission output is locked to generate waste heat that may be used to heat the cabin of a stopped vehicle.
Abstract:
A mobile heating system is disclosed. In one embodiment, the system includes an enclosure defining a plenum that houses a fan and an internal combustion engine. The heating system also includes a hydraulic circuit including a hydraulic pump operably coupled to the internal combustion engine and a first heat exchanger located in the plenum and in fluid communication with the hydraulic pump. The hydraulic circuit also includes a hydraulic motor operably coupled to the fan wherein the hydraulic motor is in fluid communication with and driven by the hydraulic pump. A first valve is disposed between the hydraulic pump and the heat exchanger and is configured to restrict fluid flow and to increase a fluid pumping pressure of the hydraulic pump. A second valve is located upstream of the first valve and is configured to selectively direct hydraulic fluid between the first valve and the hydraulic motor.
Abstract:
A system for supplying supplemental heat to a vehicle, particularly a vehicle with a diesel engine. A driven viscous plate with different viscous clutch faces on either side is provided between the engine and the coolant pump. One side clutches to the engine structure (ground) to generate heat, and the other side clutches to the coolant pump to vary the pump drive. The two sides are controlled by a valve operated by signals from the engine computer. The valve varies the supply of viscous fluid from a common reservoir independently to both sides of the driven viscous plate. The signal from the engine control unit is based on the instantaneous desired supplemental heat and coolant flow. In another embodiment, two separate viscous clutches are utilized and positioned on opposite sides of the coolant pump.
Abstract:
Methods and systems are provided for selectively increasing an amount of waste heat generated by an idling engine. An engine output is increased while a transmission output is locked to generate waste heat that may be used to heat the cabin of a stopped vehicle.