Abstract:
A method of making a microfluidic diagnostic device for use in the assaying of biological fluids, whereby a layer of adhesive in a channel pattern is printed onto a surface of a base sheet and a cover sheet is adhered to the base sheet with the adhesive. The layer of adhesive defines at least one channel, wherein the channel passes through the thickness of the adhesive layer.
Abstract:
A method for forming a micromachined device is disclosed that includes providing a first silicon layer and a second silicon layer. A coating is provided on a first portion of the first layer. The first layer and the second layer are bonded to each other to form a micromachined device, the coating being effective to prevent the coated first portion of the first layer from bonding to the second layer.
Abstract:
A method for producing a multilayer laminated film comprising: laminating a resin film having a moisture percentage of 10% by weight to 60% by weight with a first transparent film and a second transparent film each having a moisture percentage of 0.5% by weight to 5% by weight to be bonded to both sides of the resin film through an adhesive or pressure-sensitive adhesive layer interposed therebetween; wherein the laminating comprising steps of: passing the resin film and the first transparent film between a pair of a first metal roll and a first elastic roll in such a manner that the first transparent film is placed on the first metal roll side so that they are bonded to each other under pressure to form a laminated film; and then, using the laminated film without winding up it and passing the laminated film and the second transparent film between a pair of a second metal roll and a second elastic roll in such a manner that the second transparent film is placed on the second metal roll side so that they are bonded to each other under pressure to form a multilayer laminated film. The method can prevent bubbles from being formed between the resin film and the transparent film.
Abstract:
Moisture-resistant materials comprise an open net-like fabric with strands of varying thicknesses and polymer film thereon. The material is both resistant to water penetration and also slip resistant under dry or wet conditions. The moisture-resistant materials are suitable for use in various applications including roofing underpayment, flashing, housewrap and other construction sheet-like materials. An optional second layer of fabric may be applied to the moisture-resistant material, for example, to improve the strength, tear resistance, and scuff resistance of the moisture-resistant material.
Abstract:
An intravenous delivery system may have a liquid source containing a liquid, tubing, and an anti-run-dry membrane positioned such that the liquid, flowing form the liquid source to the tubing, passes through the anti-run-dry membrane. The anti-run-dry membrane may be positioned within an exterior wall of a drip unit, and may have a weld surface secured to a seat of the exterior wall via application of compression to press the weld surface against the seat, and application of coherent light or vibration. In response to application of the coherent light or vibration, localized melting may occur, causing the weld surface to adhere to the seat. The anti-run-dry membrane may be modified to have a melting point close to that of the seat. Ultrasonic or laser welding may be applied in a manner that causes portions of the seat to melt and flow into pores of the weld surface.
Abstract:
A membrane support (10, 20) for assembly into a drip chamber (5), characterized by a support member (7) having a longitudinal axis (8, 27), two ends (9) and at least one support face distanced from both ends (9) and generally parallel to the longitudinal axis (8, 27), a membrane (16, 26) joined to the at least one the support face, and a support member outlet (11, 32) formed in the support member (7) and in fluid communication with the membrane (16, 26), the support member outlet (11, 32) being fluidly communicable with an outlet of a drip chamber (5).
Abstract:
A method for joining films having a hydrophilized surface at their single surface and an excellent melt-bonding force at the melt-bonded portion, which is formed by disposing two film (A) having a hydrophilized surface at their single surface to align the hydrophilized surfaces so as to butt each end portion; overlaying a film (B) on a side of non-hydrophilized surface of the films (A) so as to bridge the butting portion, and hot-pressing the overlapping portion (c1) to join the two films (A). The wide film obtained by the above-mentioned method is suitable for a covering material for agricultural use.
Abstract:
An intravenous delivery system may have a liquid source containing a liquid, tubing, and an anti-run-dry membrane positioned such that the liquid, flowing form the liquid source to the tubing, passes through the anti-run-dry membrane. The anti-run-dry membrane may be positioned within an exterior wall of a drip unit, and may be secured to a seat of the exterior wall by an attachment component. The attachment component may have various forms, such as a secondary exterior wall that cooperates with the exterior wall to define a drip chamber, a washer positioned such that the anti-run-dry membrane is between the washer and the seat, and an adhesive ring formed of a pressure sensitive adhesive and secured to the anti-run-dry membrane and the seat via compression. Interference features may protrude inward from the exterior wall or outward from the anti-run-dry membrane to help keep the anti-run-dry membrane in place.
Abstract:
Moisture-resistant materials comprise an open net-like fabric with strands of varying thicknesses and polymer film thereon. The material is both resistant to water penetration and also slip resistant under dry or wet conditions. The moisture-resistant materials are suitable for use in various applications including roofing underpayment, flashing, housewrap and other construction sheet-like materials. An optional second layer of fabric may be applied to the moisture-resistant material, for example, to improve the strength, tear resistance, and scuff resistance of the moisture-resistant material.
Abstract:
A method of making a microfluidic diagnostic device for use in the assaying of biological fluids, whereby a layer of adhesive in a channel pattern is printed onto a surface of a base sheet and a cover sheet is adhered to the base sheet with the adhesive. The layer of adhesive defines at least one channel, wherein the channel passes through the thickness of the adhesive layer.