Abstract:
A molding machine is provided with a basic information setting function unit for setting basic information including resin data relating to pellet material, screw data relating to screw, and molding condition data relating to molding conditions, computation processing function unit comprising a provisional plastication time computation processing unit for calculating a provisional plastication time from the basic information, a melt film heating amount computation processing unit for calculating a heating amount of a melt film from the provisional plastication time obtained from the provisional plastication time computation processing unit, and a plastication delay time conversion processing unit for converting the heating amount of the melt film obtained from the melt film heating amount computation processing unit into a plastication delay time, and an output function unit for outputting plastication delay time or plastication information obtained based on the plastication delay time.
Abstract:
An injection foam molding machine of the invention includes: a movable mold platen; a fixed mold platen; a mold fastening hydraulic cylinder that is provided at each of four corners of both mold platens; a tie bar that is driven by the hydraulic cylinder to fasten the molds; two sets of mold opening and closing actuators that drive the movable mold platen to move close to or away from the fixed mold platen; two sets of dedicated core back devices; and a control device that controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices, wherein the control device includes a dedicated core back program that simultaneously controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices during a foaming core back operation of moving the movable mold platen away from the fixed mold platen.
Abstract:
In a method for thermally controlling a mold, initial measurements of flow versus pressure or pumping speed for a thermal exchange liquid are used to select an achievable flow within a maximum pressure. Subsequently, the system's identity and integrity are verified by repeating at least one measurement before and/or during a process run. An energy exchange rate can be adjusted to a moving average over preceding cycles. Thermal equilibrium can be detected by sensing changes in temperature to or from the process, or in energy exchange rates, from cycle to cycle. An energy exchange rate set point can be set to an initial value during startup, and then reset to an equilibrium value. Energy efficient operating conditions can be determined by comparing circulator energy consumption with thermal energy exchange rates over a range of flow rates and/or temperatures to the process. Cooling flow pulse timing can be graphically adjusted.
Abstract:
An injection foam molding machine of the invention includes: a movable mold platen; a fixed mold platen; a mold fastening hydraulic cylinder that is provided at each of four corners of both mold platens; a tie bar that is driven by the hydraulic cylinder to fasten the molds; two sets of mold opening and closing actuators that drive the movable mold platen to move close to or away from the fixed mold platen; two sets of dedicated core back devices; and a control device that controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices, wherein the control device includes a dedicated core back program that simultaneously controls the two sets of mold opening and closing actuators and the two sets of dedicated core back devices during a foaming core back operation of moving the movable mold platen away from the fixed mold platen.
Abstract:
A support apparatus of an injection-molding machine has a neural network that receives test molding data corresponding to molding conditions and a quality value obtained by measuring a non-defective molded article, and that determines a quality prediction function based on the received test molding data. A computer calculates a predicted value of the quality value using the quality prediction function. An input apparatus inputs into the neural network fixed values for the molding conditions except for a selected at least one of the molding conditions, and inputs a target value of the quality value. A graph generator generates a graphical relationship between the selected at least one molding condition and the predicted value. A graph correction unit corrects the graphical relationship generated by the graph generator on the basis of the target value. A display unit selectively displays the graphical relationship generated by the graph generator and the graphical relationship corrected by the graph correction unit.
Abstract:
The invention relates to a method and a device for interactive control of a machine, whereby the operating parameters necessary for the working process of the machine are inputted into a data processing unit (12), for storing the operating parameters, using an input unit (10) with input fields in a form which guides the user. Working processes are thus carried out as a result of the inputs. A data set of the base rules for the working process of the machine is recorded in the data processing unit. A limited selection (11) of possible input choices is provided for the user by application of the data set based on the machine configuration and machine environment, which further comprise compatible parts for addition to the extant parts of a working process. Operator guidance is facilitated, whereby the user is provided with a limited selection (11), corresponding to the further parts of the process, on operating fields, by the input unit (10) on the surface (16) for manual input and/or for input using a manipulator (38).
Abstract:
The invention describes a method of determining a number of process parameter values within an injection mould (1F) during an injection moulding process, which method comprises the steps of determining geometric data of the injection mould (1F) and/or of a form part (1, 1′, 1″) to be manufactured, determining a virtual part-specific pressure curve (pS) of an injection moulding process, determining a part-specific event pattern (MS) on the basis of the virtual part-specific pressure curve (pS), carrying out an injection moulding process using the injection mould (1F) and determining a measured pressure curve (pm) during the injection moulding process and determining a measurement event pattern (Mm) on the basis of the measured pressure curve (pm). Process parameter values are derived on the basis of the virtual event pattern and the measurement event pattern. The invention further describes a corresponding process parameter value determining apparatus and an injection mould arrangement.
Abstract:
The invention relates to a method for the interactive control of a machine (14), wherein the operating parameters required for the work flow (18) of the machine are input into a data processing unit (12) storing the operating parameters in a form that guides the operator. Due to the input, subsequently work flows are carried out. A data set regarding the basic rules of the work flow of the machine is present in the data processing unit. Using the data set, a chosen selection of possibilities existing based on the machine equipment and environment is provided to the operator as the result, which contains further sections that can be inserted into the existing work flow (18) in a compatible manner. Due to the fact that an action is carried out based on an initial state present on the machine, at the end of which the machine is in a current state, and that said current state or the change between the initial state and the new current state that has occurred is taught, verified, and added to the new current state via a teaching unit (20) as a new component for transfer into the work flow of the machine to be programmed, wherein a logic examination of the action is already carried out for the operability thereof during the action, the method is further improved in that the compilation of a flow is facilitated, even having little knowledge of the control.
Abstract:
Shape information of a molded article is used to determine cross sectional information. Injection speed pattern data is generated based on parameter information such as the cross sectional area of a barrel cylinder, the filling time interval, the injection stroke, etc., and the generated cross sectional information. The injection speed pattern data is used to control the injection speed of the injection screw.
Abstract:
Shape information of a molded article is used to determine cross sectional information. Injection speed pattern data is generated based on parameter information such as the cross sectional area of a barrel cylinder, the filling time interval, the injection stroke, etc., and the generated cross sectional information. The injection speed pattern data is used to control the injection speed of the injection screw.