Abstract:
A screw adjustment method in a thermosetting resin injection molding machine including a cylinder having a nozzle at a tip end of the cylinder and a screw accommodated in the cylinder. The screw adjustment method includes: contacting a screw and nozzle including bringing a tip end surface of the screw into contact with a tip end inner surface of an inner peripheral surface of the nozzle; moving the screw backward by a specified length after the contacting of the screw and the nozzle; and determining a screw position of the screw moved backward as a most forward position of the screw in a molding cycle.
Abstract:
A control method for an injection molding machine including a measurement process of measuring molten resin by moving a screw backward while rotating the screw in a heating barrel for melting a resin material, a rotational speed of the screw is reduced from a timing when a backward movement speed of the screw is reduced at the measurement process before the measurement process is completed, for stopping backward movement of the screw when the measurement process is completed, and the rotational speed and a rotation direction of the screw are controlled such that a back pressure as a pressure of the molten resin measured at the measurement process becomes a target pressure lower than the back pressure of when the measurement process is completed, when a target time comes.
Abstract:
A plasticizing device includes a flat screw including a groove forming surface in which a groove is formed, a barrel having a facing surface and a communication hole formed in the facing surface, the communication hole allowing a plasticized material to flow out, a heating unit, a flow path through which the plasticized material flows, a nozzle communicating with the flow path, a plurality of measurement units configured to measure pressures or temperatures in the flow path, an aspiration delivery unit, including a cylinder, having a branch flow path and a plunger configured to move in the cylinder so as to aspirate the plasticized material into the branch flow path or deliver the aspirated plasticized material to the nozzle, and a control unit configured to identify a state of the plasticized material in the flow path based on measurement values of the measurement units.
Abstract:
The present disclosure provides a method of molding a part. The method may include rotating a screw within a barrel to extrude a molten material through a nozzle orifice into a mold cavity to fill the mold cavity with the molten material, stopping rotation of the screw upon the mold cavity being filled with the molten material, monitoring a parameter indicative of a pressure in the mold cavity, and further rotating the screw to extrude additional molten material into the mold cavity when a drop in pressure in the mold cavity is detected.
Abstract:
The present disclosure provides a method of molding a part. The method may include rotating a screw within a barrel to extrude a molten material through a nozzle orifice into a mold cavity to fill the mold cavity with the molten material, stopping rotation of the screw upon the mold cavity being filled with the molten material, monitoring a parameter indicative of a pressure in the mold cavity, and further rotating the screw to extrude additional molten material into the mold cavity when a drop in pressure in the mold cavity is detected.
Abstract:
The present disclosure provides a molding machine and a method of molding a part. The molding machine may include multiple molding systems (e.g., extruders) for pumping molten material into one or more mold cavities. The multiple molding systems may pump the same material or different materials into the one or more mold cavities. The multiple molding systems may be individually and/or collectively controlled. A method of molding a part may include pumping material into one or more mold cavities via multiple molding systems, ceasing pumping material into the one or more mold cavities when one or more pressures associated with the multiple molding systems are achieved, and releasing a molded part from the one or more mold cavities after the one or more pressures are achieved.
Abstract:
An injection molding machine 1 includes mode selection means 8 that can selectively switch between a first control mode M1 and a second control mode M2. In the first control mode M1, control is performed by a first control system Cf in which a screw speed is controlled by feedback with a speed detection value Vd that is detected by screw speed detection means 5 and a speed target value Vfc, and an injection pressure is controlled by feedback with a pressure detection value Pid that is detected by injection pressure detection means 6 and a pressure target value Pic, whereas, in the second control mode M2, control is performed by a second control system Cs in which the screw speed is open-loop controlled with a speed target value Vsc, and a pump pressure is controlled by feedback with a pressure detection value Ppd that is detected by pump pressure detection means 7 and that is related to the pump pressure of the hydraulic pump 4 and a pressure target value Ppc.
Abstract:
The invention is to provide an in-line screw type injection molding machine which can have a simplified configuration of an injection mechanism and a metering mechanism. The in-line screw type injection molding machine is characterized by comprising: a metering motor 9 which rotationally drives a rear end side of a screw; a screw mechanism which includes a nut body rotating integrally with the screw, and a screw shaft fitted to the nut body, the screw mechanism converting rotational motion of the screw shaft into linear motion of the screw through the nut body; an injection motor 16 which rotationally drives the screw shaft; an injection motor drive circuit which drives the injection motor 16 to allow a position of the screw to follow a predetermined position command pattern; a metering motor drive circuit which drives the metering motor 9 to allow rotation of the metering motor 9 to follow a predetermined speed setting pattern; and an adder-subtracter circuit which adds or subtracts a speed setting pattern signal of the metering motor drive circuit to or from a speed command signal of the injection motor drive circuit so as to compensate an axial displacement of the screw caused by the rotation of the metering motor 9.
Abstract:
The exact method with small time-lag of detecting screw back pressure for controlling the screw back pressure in the plasticizing process of an electric-motor driven injection molding machine without using a pressure detector has been asked for because the pressure detector is very expensive, necessitates troublesome works for mounting, an electric protection against noise and the works for zero-point and span adjustings and causes a complicate mechanical structure.The present invention uses a high-gain observer which contains the discrete-time arithmetic expressions derived from a mathematical model of a plasticizing mechanism in an electric-motor driven injection molding machine consisting of state equations and outputs an estimate of screw back pressure, which is one of the state variables of the above state equations, by using a screw position signal, a servomotor current demand signal or actual motor current signal and a screw revolution speed signal as inputs. The high-gain observer obtains the exact screw back pressure estimate with very small time-lag without using a pressure detector. Thus the estimate of screw back pressure fed by the high-gain observer can be adopted as a feedback signal of actual screw back pressure for controlling the screw back pressure in the plasticizing process.
Abstract:
A measurement control method uses an ending target position Xes calculated by adding a prescribed length Ls to a measurement ending position Xe. A rotation rate pattern Ar for rotating a screw 2, a back pressure Ps in relation to the screw 2, and a retraction rate pattern Ab for the screw 2 to retract, are set in advance. The remaining rotation rate pattern Ar to stop the rotation of the screw 2 at the ending target position Xes from the detected screw position X, is calculated at the time of measurement, and the rotation of the screw 2 is stopped based on the calculation. Further, the remaining retraction rate pattern Ab is calculated from the detected retraction rate Vd, and the retraction of the screw 2 is stopped based on the calculation. The result is the stopping of the screw at the measurement ending position Xe.