摘要:
In one aspect, cutting tools are provided comprising radiation ablation regions defining at least one of refractory surface microstructures and/or nanostructures. For example, a cutting tool described herein comprises at least one cutting edge formed by intersection of a flank face and a rake face, the flank face formed of a refractory material comprising radiation ablation regions defining at least one of surface microstructures and surface nanostructures, wherein surface pore structure of the refractory material is not occluded by the surface microstructures and surface nanostructures.
摘要:
A coating for carbide substrates employs a nanostructured coating in conjunction with a non-nanostructured coating. The nanostructured coating is produced by the addition of a refining agent flow, particular hydrogen chloride gas, during deposition, and may be produced as multiple individual titanium and titanium-based nanostructured layers varying functional materials in a series. The combination of a nanostructured coating and non-nanostructured coating is believed to produce a cutting tool insert that exhibits longer life. Pre-treating the substrate with a mixture of compressed air and abrasive medium prior to coating the substrate and post-treating the coated substrate with a mixture of water and abrasive medium after the coating process is believed to further enhance the wear resistance and usage life of the cutting tool.
摘要:
A micro-drill and a method for manufacturing the same are disclosed. The micro-drill comprises: a substrate having a surface, an ultra-nanocrystalline diamond film including a plurality of ultra-nanocrystalline diamond grains, which is formed on the surface of the substrate; wherein the substrate is a tungsten carbide substrate and a size of each ultra-nanocrystalline diamond grain is in a range from 1 to 30 nm.
摘要:
In one aspect, cutting tools are provided comprising radiation ablation regions defining at least one of refractory surface microstructures and/or nanostructures. For example, a cutting tool described herein comprises at least one cutting edge formed by intersection of a flank face and a rake face, the flank face formed of a refractory material comprising radiation ablation regions defining at least one of surface microstructures and surface nanostructures, wherein surface pore structure of the refractory material is not occluded by the surface microstructures and surface nanostructures.
摘要:
A method of fabricating nanowires or microwires employs a robust conductive surface whose edges define electrodes for promoting electrochemical deposition of nanowire material at those edges. Controlled deposition times and thin conductive layers allow extremely small diameter wires to be created and then removed without destruction of the pattern and the wires to be applied to a second substrate or used for composite materials
摘要:
A process of forming an ultrafine crystal layer in a workpiece constituted by a metallic material. The process includes: performing a machining operation on a surface of the workpiece, so as to impart a large local strain to the machined surface of the workpiece, where the machining operation causes the machined surface of the workpiece to be subjected to a plastic working that causes to have large local strain in the form of a true strain of at least one, such that the ultrafine crystal layer is formed in a surface layer portion of the workpiece that defines the machined surface of the workpiece. Also disclosed are a nanocrystal layer forming process, a machine component having the ultrafine crystal layer or the nanocrystal layer, and a machine component producing process of producing the machine component.
摘要:
A sintered compact has a first material, a second material, and a third material. The first material is cubic boron nitride. The second material is a compound including zirconium. The third material is an aluminum oxide and the aluminum oxide includes a fine-particle aluminum oxide. The sintered compact has a first region in which not less than 5 volume % and not more than 50 volume % of the fine-particle aluminum oxide is dispersed in the second material. On arbitrary straight lines in the first region, an average value of continuous distances occupied by the fine-particle aluminum oxide is not more than 0.08 μm and a standard deviation of the continuous distances occupied by the fine-particle aluminum oxide is not more than 0.1 μm.
摘要:
In one aspect, cutting tools are provided comprising radiation ablation regions defining at least one of refractory surface microstructures and/or nanostructures. For example, a cutting tool described herein comprises at least one cutting edge formed by intersection of a flank face and a rake face, the flank face formed of a refractory material comprising radiation ablation regions defining at least one of surface microstructures and surface nanostructures, wherein surface pore structure of the refractory material is not occluded by the surface microstructures and surface nanostructures.
摘要:
A coated tool with a hard coating layer, which has an excellent hardness and heat insulating effect; and exhibits an excellent chipping resistance and an excellent fracturing resistance for a long-term usage, is provided. The hard coating layer included in the coated tool has a chemically vapor deposited alternate laminated structure, which is made of: a region A layer and a region B layer, each of which is expressed by the composition formula of (Ti1-xAlx)(CyN1-y); and has the average total layer thickness of 1-10 μm. In the region A layer, relationships, 0.70≦x≦0.80 and 0.0005≦y≦0.005, are satisfied; the average grain width W is 0.1 μm or less; and the average grain length L is 0.1 μm or less. In the region B layer, relationships, 0.85≦x≦0.95 and 0.0005≦y≦0.005, are satisfied; the average grain width W is 0.1-2.0 μm; and the average grain length L is 0.5-5.0 μm.
摘要:
A coated tool with a hard coating layer, which has an excellent hardness and heat insulating effect; and exhibits an excellent chipping resistance and an excellent fracturing resistance for a long-term usage, is provided. The hard coating layer included in the coated tool has a chemically vapor deposited alternate laminated structure, which is made of: a region A layer and a region B layer, each of which is expressed by the composition formula of (Ti1-xAlx)(CYN1-y); and has the average total layer thickness of 1-10 μm. In the region A layer, relationships, 0.70≦x≦0.80 and 0.0005≦y≦0.005, are satisfied; the average grain width W is 0.1 μm or less; and the average grain length L is 0.1 μm or less. In the region B layer, relationships, 0.85≦x≦0.95 and 0.0005≦y≦0.005, are satisfied; the average grain width W is 0.1-2.0 μm; and the average grain length L is 0.5-5.0 μm.