Abstract:
An emissions reduction stack includes a conditioning section, collector section utilizing a Wet Electrostatic Precipitator (WESP), and output section. A chemically active aqueous stream is introduced into an incoming process stream in order to saturate the stream and produce a fog stream wherein water is condensed on the surface of particulates. The process of condensation increases the efficiency of the particulate filtration process conducted by the WESP.
Abstract:
The invention relates to a process for the separation of charged aerosols, in which the aerosol is, first of all, separated in a collector electrode, which can be flowed through under the effect of a space charge. For the production of a high electrical potential, electrical charges of the aerosol to be separated are subsequently collected on the collector electrode. Finally, the residual aerosol exiting from the collector electrode is guided through the separation zone at high field intensity. In accordance with the invention, the invention also relates to a device for the implementation of the above-stated process.
Abstract:
Fly ash and fine dust in a gas stream from a coal combustor, for example, are efficiently collected in a 2-stage, tubular, granular bed filter. The stages of the filter are arranged one above the other so that the granules may move from the upper stage to the lower stage under the influence of gravity. Larger particulate in the gas stream is first collected by the lower stage, and then the remaining particulate is electrically charged and collected by the upper stage. Both stages are electrified sufficiently to rigidify the granular beds and adhere the particulate to the granules, so that the granules and the collected particulate move downwardly through the filters as a plug. Granules that exit from the lower stage are cleaned and returned to the upper stage. Non-porous granules may be used to prevent fine particulate from becoming embedded in the granules.
Abstract:
A fluidized bed, particulate collector system wherein, in one embodiment, the bed particles have applied thereto at the surface thereof, an additive that serves to adhere particulate, once collected, to the bed particles. The bed particles and/or additive may be combustible or may be incombustible. In one embodiment, the system includes two fluidized beds, in tandem, the first of which collects particulate mostly in the supermicron sizes and the second of which is an electrofluidized bed that collects particulate mostly in the submicron sizes.
Abstract:
Apparatus for effecting the function conventionally performed by the distributor plate in static, packed, or fluidized beds wherein the bed particles are supported or stabilized by an electric field imposed by an external source of electric potential.
Abstract:
A particle size distribution measuring system 1 sets a reference voltage in a DMA 300 to a voltage value U, and executes the classifying of aerosol particles based on electrical mobility, in an electric field to which the voltage value U is supplied. When a predetermined condition is not satisfied, an analyzing device 600 causes a sum of the voltage value for the previous classifying (previous value) and the voltage value U to be re-set in the DMA 300 and causes the classifying of the aerosol particles to be executed again. A particle measuring device 400 defines a first measurement result as a measurement result M1, and defines a result of the re-measurement as a new measurement result Mx every time the measurement is thereafter repeated. An analyzing device 600 calculates a ratio of the measurement result Mx to the measurement result M1, and confirms that the condition is satisfied when the calculation result is a prescribed value or smaller, while confirming that the condition is not satisfied when the calculation result is larger than the prescribed value.
Abstract:
Methods and systems for detecting and/or collecting particles are disclosed. At least some of the particles are electrically charged by a charger (122). At least some of the charged particles are collected by a collector (140). Information indicating the number of the detected/collected particles based on measured electrical charges of the charged particles is obtained by a processor (170).
Abstract:
A maximum number of charges on aerosol particles which are measurement targets is decided as a natural number x equal to or larger than 2. First and second electrical mobility groups are derived based on x. The first group includes electrical mobility Zc(U) and electrical mobilities having voltage values equal to a voltage U multiplied by values from 2 to x respectively, and the second group includes electrical mobilities having respective voltage values equal to voltage U multiplied by irreducible fractions which are coprime to each other among values with regularity. A ratio of flow rate with which range corresponding to the electrical mobilities included in the first group do not interfere with one another and the range corresponding to the electrical mobilities included in the first group and range corresponding to the electrical mobilities included in the mobility group do not interfere with one another is calculated.
Abstract:
The present invention is an air purification method and device. Due to the lower airflow resistance that the present invention induces, an exhaust fan or blower with motor of lower torque is adopted. Consequently, the whole air purification is operated at a lower noise level. Lower operational voltage is applicable for the high-voltage electrostatic precipitator device and provides a similar or superior performance and effectiveness for dust removal. The air purification device/system is designed with higher flexibility and of more compact in dimension and size. Dust is removed from the environment by a high voltage electrostatic precipitator. The airflow stream within a high-voltage electrostatic precipitator is such that the direction of the path of the airflow is changed at least twice.
Abstract:
Improvements in the catalytic processing of organic compounds for fuels and for other uses, and ways in order to better utilize the heat from the above processing and also from other sources.