Abstract:
A method for manufacturing a porous membrane includes: mixing silicon carbide powders and a coagulant to form a first mixture; adding a sintering aid to the first mixture to form a second mixture; compressing the second mixture; and sintering the compressed second mixture. More particularly, the coagulant is in an amount of 1% to 3% by weight of the silicon carbide powders and the sintering aid is in an amount of 10% by weight of the first mixture.
Abstract:
Provided is a stirring device including: a stirred tank, of which an inner peripheral wall has a circular shape in cross section; and at least one flow impeller and at least one shearing impeller that are located inside the stirred tank and configured to be rotatable independently of each other, in which rotational centers of the flow impeller and the shearing impeller are coaxially provided, the flow impeller rotates around a vertical axis along the inner peripheral wall of the stirred tank to form at least a flow directed toward a lower side in the stirring object existing in the stirred tank, and the shearing impeller imparts a shearing force to the stirring object and is provided on a radially inward side of the flow impeller in the stirred tank and at a position contacting the flow of the stirring object formed by the flow impeller.
Abstract:
There is provided a method of producing microparticles using an emulsion based synthesis route including: Providing a first fluid phase and a second fluid phase, wherein the first fluid phase is a continuous phase and the second fluid phase is a dispersed phase comprising a dispersed material, wherein the continuous phase is immiscible with the dispersed phase; Mixing the first continuous phase and the second dispersed phase in the presence of a surfactant in a shear device to form an emulsion of droplets of controllable size and having a narrow drop size distribution; Drying the emulsion to form microparticles of controllable size and having narrow size distribution, and wherein the microparticles may comprise spherical, crumpled, dimpled, porous or hollow microparticles morphology. Also provided is a system including shear device and drying arrangement. Also provided are micro particles of controllable size and morphology formed by the method.
Abstract:
A chemical treatment apparatus for diluting and activating a polymeric material can include a mixing chamber having a first end, a second end, a first baffle plate positioned between the first end and second end, a high shear mixing zone positioned between the first end of the mixing chamber and the first baffle plate, and a low shear mixing zone positioned downstream from the high shear agitation zone between the second end of the mixing chamber and the first baffle plate. The volume ratio of the high shear mixing zone to the low shear mixing zone can be in the range of 1:2 to 1:10. A method and system for diluting and activating polymeric materials are also disclosed.
Abstract:
An apparatus for processing a quantity of glass melt comprises a segmented tube including a first tube segment and a second tube segment. A second end portion of the first tube segment is joined to a first end portion of the second tube segment. In further examples, methods of fabricating a segmented torsion tube include joining together segmented torsion tubes at an integral solid-state joint.
Abstract:
The present disclosure provides systems and methods for locally producing a solution using a concentrate. In a localized solution production unit, a solution is identified in association with the concentrate. A mixing profile is selected from among a plurality of mixing profiles based on the solution identified. A base fluid is dispensed into a mixing container docked in a container dock. The mixing container includes a mixing impeller rotatably coupled to the mixing container via an impeller shaft extending from a base of the mixing container. A controller actuates an actuator in the container dock to cause an impeller in the mixing container to rotate. The concentrate is dispensed into the mixing container and mixed with the base fluid via the impeller based on the selected mixing profile.
Abstract:
To provide a processing device which is small but which can exhibits a sufficient processing amount and a uniform contact processing property. In the processing vessel 10, a liquid flow is set to a spiral flow, and in a contact processing field, the injection liquid A, B are injected at a center-side position with respect to an inner surface of the processing vessel so as to perform contact processing.
Abstract:
Provided are electrokinetically-altered fluids (e.g., gas-enriched electrokinetic fluids) comprising an ionic aqueous solution of charge-stabilized oxygen-containing nanostructures in an amount sufficient to provide modulation of at least one of cellular membrane potential and cellular membrane conductivity, and therapeutic compositions and methods for use in treating a wound to a surface tissue or a symptom thereof. The electrokinetically-altered fluids or therapeutic compositions and methods include electrokinetically-altered ioinic aqueous fluids optionally in combination with other therapeutic agents. Particular aspects provide for regulating or modulating intracellular signal transduction associated with said inflammatory responses by modulation of at least one of cellular membranes, membrane potential, membrane proteins such as membrane receptors, including but not limited to G-Protein Coupled Receptors (GPCR), and intercellular junctions (e.g., tight junctions, gap junctions, zona adherins and desmasomes). Other embodiments include particular routes of administration or formulations for the electrokinetically-altered fluids (e.g., electrokinetically-altered gas-enriched fluids and solutions) and therapeutic compositions.
Abstract:
A fluid processing method with which processing properties of fluids to be processed can be effectively controlled. Processing surfaces which are capable of being brought closer to each other and being separated from each other, and which rotate relatively are provided. A fluid to be processed is made to pass from inside to outside in a processing area between the processing surfaces to obtain a fluid thin film, and the resultant fluid thin film of the fluid to be processed is subjected to processing. Processing properties are controlled by changing the ratio of the distance to an outer peripheral end from a centre of rotation.
Abstract:
Disclosed is a chemical liquid discharge mechanism. The mechanism includes: a storage portion including a chemical liquid storage space; a diluent supply port opened to supply a diluent for reducing a viscosity of the chemical liquid to the storage space; a vertex flow forming portion that forms vortex flows in the diluent and the chemical liquid by supplying a fluid to the storage space to stir the diluent and the chemical liquid; and a liquid discharge port opened to an upper side of the diluent supply port in the storage space such that, by the supply of the diluent, the diluent and the chemical liquid flow into the liquid discharge port to be discharged from the storage space. Thus, the viscosity of the waste liquid discharged from the liquid discharge port may be reduced, and thus, it is not necessary to largely set the inclination of the liquid discharge path.