Abstract:
A noninvasive/minimally invasive neuromodulation system and method for providing therapy to a target neural tissue of a patient. In one arrangement, an example method comprises applying at least two input waveforms to respective pairs of electrodes affixed on the patient's skin or subcutaneously disposed relative to the target neural tissue, wherein the frequencies of the input waveforms are configured such that they combine, when simultaneously applied, to generate a beat waveform having a beat frequency due to interference. The beat waveform is causative of a transcutaneous/subcutaneous temporal interference (T/STI) electric field generated in the patient body, the T/STI electric field including an interference region at least partially overlapping the target neural tissue of the patient, wherein the beat frequency is of a value operative to impart a therapeutic effect to the target neural tissue.
Abstract:
An electrical stimulation control circuit including a pulse generator, a processing circuit and an electrode is provided. The pulse generator is configured to generate a switching signal. The processing circuit generates an energy signal according to the switching signal. The electrode is configured to contact the skin of a living body and includes a first comb electrode and a second comb electrode. The first comb electrode receives the energy signal and includes a plurality of first electrodes. The first electrodes are electrically connected to each other and extended along a first direction. The second comb electrode receives a ground signal and includes a plurality of second electrodes. The second electrodes are electrically connected to each other and extended along a second direction opposite to the first direction. The first electrodes and the second electrodes are arranged in a staggered manner and electrically insulated from each other.
Abstract:
A patch for a therapeutic electrical stimulation device includes a shoe connected to the first side of the patch, the shoe including a body extending in a longitudinal direction from a first end to a second end, and having first and second surfaces, the first end of the shoe defining at least two ports, and the first surface of the shoe defining a connection member. The patch also includes at least one conductor positioned in the ports of the first end of the shoe. The shoe is configured for sliding insertion into a receptacle defined by a controller so that the conductor is connected to the controller to deliver electrical current from the controller, through the conductor, and to the electrodes, and the connection member is at least partially captured by a detent defined by the controller in the receptacle to retain the shoe within the receptacle.
Abstract:
Methods and apparatus are provided for multi-vessel neuromodulation, e.g., via a pulsed electric field. Such multi-vessel neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, the multi-vessel neuromodulation is applied to neural fibers that contribute to renal function. Such multi-vessel neuromodulation optionally may be performed bilaterally.
Abstract:
A patch for a therapeutic electrical stimulation device includes a shoe connected to the first side of the patch, the shoe including a body extending in a longitudinal direction from a first end to a second end, and having first and second surfaces, the first end of the shoe defining at least two ports, and the first surface of the shoe defining a connection member. The patch also includes at least one conductor positioned in the ports of the first end of the shoe. The shoe is configured for sliding insertion into a receptacle defined by a controller so that the conductor is connected to the controller to deliver electrical current from the controller, through the conductor, and to the electrodes, and the connection member is at least partially captured by a detent defined by the controller in the receptacle to retain the shoe within the receptacle.
Abstract:
A garment with prepositioned, definite sensory stimulating devices attached. These sensory stimulating devices include, but are not limited to, electrical stimulation, audio and physical stimulation such as localised force generation, compression, constriction, vibration, and surround sound. Predetermined and defined actuators allow the wearer to receive tissue, nerve and/or muscle stimulation and/or contraction so that the stimulation is precise as determined by its ability to conform to the scientific methodology of repeatability, reproducibility and reliability; this being due to consistency of actuator positioning in one or multiple locals on the human body. A personal surround sound can also be integrated to the garment to ensure the wearer is always in the optimal position relative the speakers. These actuators can be force generators within the garment for the wearer to feel impact or apparatus or electrodes included in the garment to locally constrict and increase pressure on the wearer.
Abstract:
A patch for a therapeutic electrical stimulation device includes a shoe connected to the first side of the patch, the shoe including a body extending in a longitudinal direction from a first end to a second end, and having first and second surfaces, the first end of the shoe defining at least two ports, and the first surface of the shoe defining a connection member. The patch also includes at least one conductor positioned in the ports of the first end of the shoe. The shoe is configured for sliding insertion into a receptacle defined by a controller so that the conductor is connected to the controller to deliver electrical current from the controller, through the conductor, and to the electrodes, and the connection member is at least partially captured by a detent defined by the controller in the receptacle to retain the shoe within the receptacle.
Abstract:
In exemplary implementations of this invention, stimuli are intermittently presented to the left or right side of a user. For example, this invention may comprise a method of presenting stimuli to a bilateral organism, which organism has a left side and a right side, wherein: (a) the stimuli are produced by at least one transducer, (b) the stimuli include an intermittent beat train, and (c) the beat train has a beat frequency that is substantially equal to 7.8×(1.618)n Hz, where n is an even integer, which even integer may be negative, zero or positive.
Abstract:
The invention relates to a system for electrical and/or magnetic neuronal stimulation, comprising a signal generator for generating a stimulation signal, in particular an alternating-current stimulation signal, an applicator for applying the stimulation signal, in particular in an area on or directly around the optic nerve, a lead for deriving a measurement signal, in particular an EEG signal, a biomarker calculation unit for calculating a biomarker based on the measurement signal, and an optimization unit, in particular for performing a stochastic optimization process, for optimizing the value of the biomarker by varying the stimulation signal.