摘要:
The disclosure relates to methods for treating tumors. In particular, the disclosure relates to a method of treating a tumor by magnetic resonance image-guided radiation therapy in a subject in need thereof, said method comprising the steps of:
(i) administering an efficient amount of high-Z element containing nanoparticles having, contrast enhancement for magnetic resonance imaging and/or radiosensitizing properties for radiation therapy, in a subject in need thereof, and, (ii) exposing said subject to magnetic resonance image-guided radiation therapy by means of a Magnetic Resonance Imaging Guided Linear Accelerator (MR-Linac),
wherein said high-Z element containing nanoparticles are nanoparticles containing an element with an atomic Z number higher than 40, preferably higher than 50, and said nanoparticles have a mean hydrodynamic diameter below 20 nm, for example between 1 and 10 nm, preferably between 2 and 8 nm.
摘要:
The present invention relates to a composition for use as a contrast agent in medical imaging. The composition comprises a metal ion containing compound comprises at least one metal ion adapted to bind with one or more metal ion chelating agents; wherein said one or more metal ion chelating agents comprise at least one first chelating agent adapted to target a region of interest being imaged, and at least one second chelating agent having at least one functional group adapted to dissociate in an aqueous medium to thereby allow or enhance contrast of the region of interest under the medical imaging. The present invention further relates to a diagnostic agent for use in amyloid (Aβ) protein detection under magnetic resonance imaging (MRI) comprising the above described composition; and a method of preparing thereof.
摘要:
A Magnetic Resonance Imaging (MRI) enhancement agent includes a plurality of particles, each particle including: a metal core; a dielectric shell disposed on the metal core comprising at least one MRI contrast agent; and a metal shell disposed on the exterior surface of the dielectric shell that encapsulates the dielectric shell.
摘要:
Synthesis and characterization of starch based pH-responsive nanoparticles for controlled drug delivery are described. Polymethacrylic acid grafted starch (PMAA-g-St) nanoparticles with various molar ratio of starch to MAA were synthesized by a new one-pot method that enabled simultaneous grafting of PMAA and nanoparticle formation in an aqueous medium. NMR data showed that polysorbate 80 was polymerized into the graft polymer. Nanoparticles were relatively spherical with narrow size distribution and porous surface morphology and exhibited pH-dependent swelling in physiological pH range. The particle size and magnitude of volume phase transition were dependent on PMAA content and formulation parameters such as surfactant levels, cross-linker amount, and total monomer concentration. The results showed that the new pH-responsive nanoparticles possessed useful properties for controlled drug delivery.
摘要:
Nanoparticles include a core and one or more targeting moieties, as well as one or more contrast agents or one or more therapeutic agents. The contrast agents or therapeutic agents may be contained or embedded within the core. If the nanoparticle includes therapeutic agents, the agents are preferably released from the core at a desired rate. The core may be biodegradable and may release the agents as the core is degraded or eroded. The targeting moieties preferably extend outwardly from the core so that they are available for interaction with cellular components, which interactions will target the nanoparticles to the appropriate cells, such as apoptotic cells; organelles, such as mitochondria; or the like. The targeting moieties may be tethered to the core or components that interact with the core.
摘要:
Multimodal nanoparticles are nanoparticles containing contrast agents for PAT and one or more of luminescence imaging, x-ray imaging, and/or MRI. The multimodal nanoparticles can have a dielectric core comprising an oxide with a metal coating on the core. The particles can be metal speckled. The multimodal nanoparticles can be used for therapeutic purposes such as ablation of tumors or by neutron capture in addition to use as contrast agents for imaging.
摘要:
The invention relates to nanoscale particles as contrast agents for magnetic resonance imaging, consisting of a core having an inert matrix, one or more covalently bonded organic complexing agents in which one or more metal ions having unpaired electrons are bonded, and optionally one or more biomolecules covalently bonded to the surface of the cores, and to a process for the production of these nanoparticles.
摘要:
An improved contrast agent for magnetic resonance imaging comprises particles to each of which is coupled a multiplicity of chelating agents containing paramagnetic ions. In the improved agent, the position of the ion is offset from the surface of the particle so as to improve the relaxivity imparted by the contrast agent. A tether offsetting the chelate from the surface of the particle may optionally contain cleavage sites permitting more facile excretion of the chelated paramagnetic ion.
摘要:
Materials and methods for making small magnetic particles, e.g. clusters of metal atoms, which can be employed as a substrate for immobilising a plurality of ligands. Also disclosed are uses of these magnetic nanoparticles as therapeutic and diagnostic reagents, and in the study of ligand-mediated interactions.
摘要:
Treated apatite particles are disclosed for enhancing medical diagnostic imaging such as magnetic resonance imaging ("MRI"), magnetic resonance spectroscopy ("MRS"), magnetic resonance spectroscopy imaging (37 MRSI"), X-ray diagnostic imaging, and ultrasound imaging. Novel coating and manufacturing techniques are disclosed to control particle size and particle aggregation resulting in compositions for organ specific imaging of the liver, spleen, gastrointestinal tract, or tissue disease states is obtained. Depending on the diagnostic imaging technique, apatite particles are treated to be paramagnetic, radiopaque, or echogenic. The apatite particles may also be fluorinated to form stable fluoroapatite compositions useful for .sup.19 F imaging. Also disclosed are diagnostic compositions and methods of performing medical diagnostic procedures which involve administering to a warm-blooded animal a diagnostically effective amount of the abovedescribed apatite particles and then performing the medical diagnostic procedure.