Abstract:
In the solar battery module 20, solar battery cells 10 arranged in a matrix of eight rows and four columns with their conducting direction aligned and five plate spring members 22 having nearly an inverted U-shaped cross-section are housed in an inner space surrounded by a support substrate 21, an outer frame, a rubber packing frame, and a glass casing plate 25, and the plate spring members 22 each have a pair of connection flanges 22a at the bottom. The plate spring members 22 are provided on either side of columns of multiple solar battery cells 10. Eight solar battery cells 10 are interposed between the connection flanges 22a of the plate spring members on either side of them, whereby they are parallel-connected. Four columns of solar battery cells 10 are serially-connected by five plate spring members 22 and the output is retrieved through the positive electrode coating 28 and negative electrode coating 29.
Abstract:
A light receiving or light emitting modular sheet having a plurality of spherical elements arranged in matrix. It is constituted only of acceptable spherical elements and photoelectric conversion efficiency thereof is enhanced.The light receiving modular sheet (1) comprises a plurality of spherical solar cell elements (2) arranged in matrix, a meshed member (3), and a sheet member (4). Each solar cell element (2) comprises a spherical pn junction (13), and positive and negative electrodes (14, 15) formed oppositely while sandwiching the center of the solar cell element (2) and being connected with respective electrodes of the pn junction (13). The meshed member (3) has a plurality of conductive wires (20, 21) arranged in parallel in order to connect the plurality of spherical solar cell elements (2) in each column electrically in parallel, and insulating tensile wires (22) arranged between the rows of solar cell elements (2) to cross the conductive wires (20, 21) perpendicularly while being woven in a meshed form to secure the plurality of conductive wires (20, 21).
Abstract:
In order to collect a plurality of semiconductor elements easily from a semiconductor module where a plurality of rod-like semiconductor elements for power generation or light emission are built in and to reuse or repair them, two split modules 61 are arranged in series in a containing case 62 in a semiconductor module 60. In each split module 61, power generating semiconductor elements 1 arranged in a matrix of a plurality of rows and columns, and a conductive connection mechanism for connecting the plurality of semiconductor elements 1 in each row in series and the plurality of semiconductor elements 1 in each column in parallel are molded with transparent synthetic resin, and a connection conductor 67 is allowed to project at the end. A conductive waved spring 70 and an external terminal 76 are provided on the end side of the containing case 62, and series connection of the two split modules 61 is ensured by mechanical pressing force of the conductive waved spring 70.
Abstract:
A laminated solar battery (200) wherein four solar cell modules are incorporated and integrally laminated is provided with four types of solar cell modules (90, 100, 70 and 60) which have different sensitivity wavelength bands and are so laminated that the shorter the center wavelength in the sensitivity wavelength band is, the more near the module is located to the incidental side of sunlight, wherein each of the three types solar cell modules (90, 100 and 70) is constituted with cell group modules having plural nearly spherical solar cells (30, 40 and 10) aligned in plural columns and plural rows and the lowest solar cell module (60) is constituted with a planar light receiving module.
Abstract:
A solar battery module as a panel-shaped semiconductor module comprises multiple spherical or nearly spherical, granular electric power generation semiconductor elements arranged in multiple rows and columns, a conductive connection mechanism electrically connecting in parallel multiple semiconductor elements in each row and connecting in series multiple semiconductor elements in each column, and a conductive inner metal case housing the multiple semiconductor elements and constituting the conductive connection mechanism, wherein each row of semiconductor elements is housed in each reflecting surface-forming groove of the inner metal case, the positive electrodes of the semiconductor electrodes are connected to the bottom plate and the negative electrodes are connected to finger leads, the bottom plate of each reflecting surface-forming grove has a cutoff slit, and the top is covered with a transparent cover member.
Abstract:
This stacked solar battery device includes a plurality of solar battery units 4, an enclosure case made of a metal plate to house these solar battery units 4 therein, a cover glass having a partial cylindrical lens formed. The plurality of solar battery units 4 are housed in a plurality of recesses of the enclosure case, and are sealed with a sealing material of synthetic resin. The solar battery unit 4 has a planar light receiving solar battery module 10, and rod light receiving solar battery modules 30 and 50 stacked so that the module having a shorter center wavelength of the sensitivity wavelength band is positioned closer to the incident side of the sunlight. The solar battery module 10 is configured so that five planar light receiving solar-battery cells 11 are connected in parallel with four connection rods 20a and 20b, and the sunlight modules 30 and 50 are configured so that five sub modules 31 and 51 are connected in parallel respectively with the connection rods 40a, 40b, 60a and 60b. The sub modules 31 and 51 are configured so that a plurality of rod-shaped solar battery cells 32 and 52 respectively are connected in series.
Abstract:
A drop tube type granulated crystal manufacturing device (1) for making a nearly spherical crystalline substance by instant solidification as the solidification trigger by impacting the inner wall surface of a drop tube while a granular droplet made of an inorganic material is discharged from a nozzle of a rotary crucible by the centrifugal force and allowed to free fall inside the drop tube, has been disclosed. The crucible (12) is provided at the upper end of the drop tube (4) and which holds melt of inorganic material and is capable of rotating around a vertical centeral axis, and a plurality of nozzles (23) of a small diameter formed in a radial pattern relative to the vertical centeral axis, is formed at the periphery of the crucible (12). The crucible (12) is rotatively driven by the rotary drive means (13), and the crucible (12) and inorganic material held in the crucible (12) is heated by a heating means (15) and a cooling gas flow is formed inside the drop tube (4) by the gas flow formation means (5).
Abstract:
The invention relates to a radiation detector. The detector includes an insulating substrate, a thin-film layer made of semiconductor or insulator formed on the surface of the substrate, at least a pair of electrodes provided on the thin-film layer, voltage applying means for applying a voltage across the electrodes and current detection means for detecting current taken from the electrodes, wherein radiation is detected using the fact that conductance of the thin-film layer changes linearly with respect to radiation intensity due to irradiation with radiation. Preferably, the thin-film layer comprises a metallic oxide. The metallic oxide comprises either one or any combination of two or more selected from titanium oxide, aluminum oxide (alumina), zirconium oxide, iron oxide, zinc oxide, yttrium oxide, manganese oxide, neodymium oxide, ceric oxide, tin oxide, or strontium titanate.
Abstract:
A see-through type solar battery module includes optically transparent first and second substrates and a plurality of annular clusters. Each cluster includes: a plurality of spherical solar cells; a conductive layer to which first electrodes of the plurality of solar cells are electrically connected in parallel; a conductive member to which second electrodes of the plurality of solar cells are electrically connected in parallel; a bypass diode connected to the conductive layer and the conductive member; and a conductive connection member that electrically connects the conductive layer to conductive member of the cluster that is adjacent in a predetermined direction. By providing the clusters in a snowflake configuration, or in a single rectilinear pattern, the scope is enlarged for selecting the ratio between sunlight transmission ratio and electrical generation capability, so that enhanced freedom of design for use as a window material is obtained.
Abstract:
A photoelectric conversion module includes a photoelectric conversion element that converts an arriving optical signal transmitted via an optical fiber into an electrical signal, a signal output section that outputs a photoelectrically converted electrical signal to the exterior, an impedance matching circuit provided between an output electrode of the photoelectric conversion element and the signal output section, and a substrate upon which this impedance matching circuit is mounted, with the impedance matching circuit including a plurality of metallic coating layers formed upon the surface of the substrate with gaps being left between them, and a plurality of metallic connecting lines that electrically connect together adjacent ones of these metallic coating layers.