摘要:
The control system controls lean-rich modulation of fueling using a set of engine specific fueling parameter maps. One set of maps is a set of lean fueling maps, and another set is a set of rich fueling maps. The two map sets each comprise a fuel injection pressure map, an EGR valve opening map, and a VGT valve opening map, established for the particular diesel engine, with neither form of modulation requiring post injection. The strategy is represented by a flow diagram and is useful in regenerating an NOx adsorber catalyst in the engine exhaust system in a manner that controls torque so that the regeneration process is transparent to the operator of the vehicle, while producing significant fuel savings.
摘要:
An engine system (100) has a valve system (137). An inlet of a turbine (109) is fluidly connected to a first inlet (119) of the valve system (137). An outlet of the turbine (123) is fluidly connected to a second inlet (113) of the valve system (137). An outlet of a compressor (155) is fluidly connected to a first outlet (115) of the valve system (137). An inlet of the compressor (141) is fluidly connected to a second outlet (111) of the valve system (137). An inlet of an exhaust gas recirculation system (133) is fluidly connected to a third outlet (121) of the valve system (137), and an outlet of the exhaust gas recirculation system is fluidly connected to a third inlet (117) of the valve system (137).
摘要:
A compression ignition engine (20) has a control system (26) for processing data, one or more combustion chambers (22), and fuel injectors (24) for injecting fuel into the combustion chambers. The control system controls fueling using a result of the processing of certain data, such as engine speed and engine load.
摘要:
An engine (20) and an engine control strategy (FIGS. 2 and 3) for lean-to-rich transitions, such transitions being useful for various purposes, one of which is purging, or regenerating, a NOx adsorber (36) in the engine exhaust system.
摘要:
An internal combustion engine (200) includes a coolant pump (212) having a pump outlet (214), and a first exhaust gas recirculation (EGR) cooler (206) fluidly connected to the pump outlet (214). A crankcase (202) is fluidly connected in parallel with the EGR cooler (206) to the pump outlet (214) for receiving coolant therefrom. A cylinder head (204) is fluidly connected to the crankcase (202) for receiving coolant therefrom. A thermostat (232) is fluidly connected between the cylinder head (204) and the coolant pump (212). A valve system (238) has a first selectable position fluidly connecting the flow from the first EGR cooler (206) to the flow in the cylinder head (204), and a second selectable position fluidly connecting the flow from the first EGR cooler (206) to the thermostat (232) in bypassing relation to the cylinder head (204). Each of the first or second position is effected in response to an engine operating parameter.
摘要:
A vortex mixing system mixes intake air with exhaust gases for exhaust gas recirculation (EGR) in an internal combustion engine. The vortex mixing system may have a vortex mixing device connected to an intake air conduit, a supply conduit, and an EGR conduit. The vortex mixing device may have a plenum disposed around a mixing conduit, which is connected to the intake air conduit and the supply conduit. The plenum is connected to one or more cross conduits and to the EGR conduit. The cross conduits extend across a mixing chamber formed by the mixing conduit. The cross conduits generate one or more vortices in the intake air. Each cross conduit has one or more outlets. The cross conduits direct the exhaust gases through the outlets into the vortices. The exhaust gases mix with the intake air in the vortices.
摘要:
A compression ignition engine (10) for a motor vehicle has a control system (20) for processing data, one or more combustion chambers (12), and fuel injectors (18) for injecting fuel into the chambers. The control system controls lean-rich modulation of fueling using independent maps. One set of maps is a set of lean fueling maps, and another set is a set of rich fueling maps. The strategy is represented by a flow diagram (30) and is useful in regenerating a NOx adsorber catalyst (16) in the engine exhaust system (14) in a manner that controls torque so that the regeneration process is transparent to the operator of the vehicle.
摘要:
A compression ignition engine (60) has a control system (66) for processing data, one or more combustion chambers (62), and fuel injectors (64) for injecting fuel into the chambers. The control system controls fueling by processing engine speed and load, to select one of four fueling modes (HCCI+RVT, HCCI+IVC, HCCI+IVC+EVC, and CD+RVT) for operating the engine (FIG. 5). When HCCI+RVT mode is selected, intake valves operate with regular valve timing (RVT), and the engine is fueled to cause homogeneous-charge compression-ignition (HCCI) combustion. When HCCI+IVC mode or HCCI+IVC+EVC mode is selected, intake valve timing is changed relative to RVT, and the engine is fueled to cause HCCI combustion. When the processing selects the CD+RVT mode, the intake valves operate with RVT, and the engine is fueled to cause CD combustion. In HCCI+IVC+EVC mode, exhaust valve closing is retarded relative to its timing in HCCI+IVC mode to reduce cylinder pressure and temperature.
摘要:
An internal combustion engine (200) includes a coolant pump (212) having a pump outlet (214), and a first exhaust gas recirculation (EGR) cooler (206) fluidly connected to the pump outlet (214). A crankcase (202) is fluidly connected in parallel with the EGR cooler (206) to the pump outlet (214) for receiving coolant therefrom. A cylinder head (204) is fluidly connected to the crankcase (202) for receiving coolant therefrom. A thermostat (232) is fluidly connected between the cylinder head (204) and the coolant pump (212). A valve system (238) has a first selectable position fluidly connecting the flow from the first EGR cooler (206) to the flow in the cylinder head (204), and a second selectable position fluidly connecting the flow from the first EGR cooler (206) to the thermostat (232) in bypassing relation to the cylinder head (204). Each of the first or second position is effected in response to an engine operating parameter.
摘要:
A compression ignition engine (60) has a control system (66) for processing data, one or more combustion chambers (62), and fuel injectors (64) for injecting fuel into the chambers. The control system controls fueling by processing engine speed and load, to select one of four fueling modes (HCCI+RVT, HCCI+IVC, HCCI+IVC+EVC, and CD+RVT) for operating the engine (FIG. 5). When HCCI+RVT mode is selected, intake valves operate with regular valve timing (RVT), and the engine is fueled to cause homogeneous-charge compression-ignition (HCCI) combustion. When HCCI+IVC mode or HCCI+IVC+EVC mode is selected, intake valve timing is changed relative to RVT, and the engine is fueled to cause HCCI combustion. When the processing selects the CD+RVT mode, the intake valves operate with RVT, and the engine is fueled to cause CD combustion. In HCCI+IVC+EVC mode, exhaust valve closing is retarded relative to its timing in HCCI+IVC mode to reduce cylinder pressure and temperature.