Abstract:
An MFD is disclosed. For example, the MFD includes a processor and a non-transitory computer-readable medium storing a plurality of instructions. The instructions when executed by the processor cause the processor to perform operations that include receiving an email, determining that a user wants to establish a connection based on the email, generating a reply email to the user, wherein the reply email includes an executable file that automatically configures an endpoint device of the user to establish the connection, transmitting the reply email to the user, and establishing the connection to the endpoint device of the user in response to execution of the executable file by the endpoint device of the user.
Abstract:
A method for printing on a multi-dimensional object may include creating a customized object holder for the multi-dimensional object by heating a thermoforming sheet to a thermoforming temperature, molding the heated thermoforming sheet around at least a portion of a multi-dimensional object to form a holding portion for the multi-dimensional object, creating one or more printable areas on the molded thermoforming sheet, and applying one or more datum points on the molded thermoformed sheet. The one or more datum points may be configured to provide information relating to position of the one or more printable areas to a print system.
Abstract:
A method for printing on a multi-dimensional object may include creating a customized object holder for the multi-dimensional object by heating a thermoforming sheet to a thermoforming temperature, molding the heated thermoforming sheet around at least a portion of a multi-dimensional object to form a holding portion for the multi-dimensional object, creating one or more printable areas on the molded thermoforming sheet, and applying one or more datum points on the molded thermoformed sheet. The one or more datum points may be configured to provide information relating to position of the one or more printable areas to a print system.
Abstract:
A system and method for printing on a multi-dimensional object includes at least one print head configured to eject marking material onto a surface of the multi-dimensional object, a support member positioned parallel to a plane formed by the at least one print head, and an object holder. The object holder includes a moving frame configured to traverse the support member, at least one granule-filled collapsible membrane configured to be retained within the moving frame and at least partially collapsible around the multi-dimensional object when a volume of air is withdrawn therefrom, and at least one inflatable bladder associated with the moving frame and configured to be inflated to retain the at least one collapsible membrane within the moving frame when air is withdrawn from the at least one collapsible membrane.
Abstract:
A method of operating a three-dimensional object printer has been developed. The method receives image data corresponding to at least one three-dimensional object. The method generates image data corresponding to at least one member that extends from the at least one three-dimensional object corresponding to the received image data. The method operates an ejector head of the three-dimensional object printer with a controller referencing the received image data and the generated image data to eject drops of a build material onto a platen to form the at least one three-dimensional object and the at least one member extending from the at least one three-dimensional object.
Abstract:
A system that includes a three-dimensional (3D) printing device, processor and computer-readable memory a 3D barcode and prints a three-dimensional object containing information embedded in the 3D barcode by: (i) receiving information to be embedded in the 3D barcode; (ii) determining a barcode symbology, wherein the barcode symbology includes at least one symbol character in a z-dimension; (iii) generating a build sequence that will cause the 3D-printing device to print the 3D barcode that embeds the received information in the 3D barcode in accordance with the barcode symbology; and (iv) using the build sequence to print the 3D object so that each symbol character of the symbology that is to appear in the z-dimension is printed as a physical representation in the z-direction on the 3D object.
Abstract:
A spill proof, user-friendly dispensing system that protects users from exposure to toxic fluids (e.g., Ethylene Glycol used in MICR ink) includes a bottle loading mechanism for feeding ink or other fluids to a respective supply tank of an image forming device, and a quick connect gravity feed multipurpose bottle apparatus. Ink replenishing bottles can be inserted upright into holder of the bottle loading mechanism, connected to a supply tank, and folded back out-of-the-way in a dispensing position. The bottle may be rotated from a gravity feed position to a rotated position for removal and installation while the bottle remains in the holder. The bottle when empty may be used to collect waste from the image forming device.
Abstract:
A printer detects malfunctioning ejectors during printing of three-dimensional objects or two-dimensional printed matter. The printer operates the printhead or printheads in the printer to form convex drops of material on a substrate. A camera is positioned to minimize light reflections from the substrate into the camera. The camera is configured to generate image data of the light reflected from the substrate and specularly from the convex drops on the substrate. A controller analyzes the image data to identify malfunctioning inkjets.
Abstract:
Devices and methods to collect and align print media sheets. According to a device herein, a tray has a base and receives print media sheets. Registration guides are connected to the tray. The registration guides define a corner in the tray. A tamper mechanism comprises a rotating helical brush extending perpendicularly from the base adjacent to a side of the tray opposite the corner. The tamper mechanism is positioned to tamp the print media sheets against the registration guides causing a stack of the print media sheets to be squared against the corner.
Abstract:
A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.