Abstract:
The present disclosure provides reagents and methods for identifying compounds that promote arterial endothelial cell differentiation and nitric oxide production therefrom. Pharmaceutical compositions comprising compounds identified thereby are provided as are therapeutic methods using these pharmaceutical compositions for treating neural and cardiovascular diseases and disorders associated with deficient or disrupted nitric oxide production in arterial endothelial cells.
Abstract:
A method for producing mature hepatocytes having functional hepatic enzyme activity from human pluripotent cells is disclosed. The method includes the step of transferring an external vector comprising the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-122, the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-let-7c, a microRNA having the seed sequence of the microRNA miR-122, a microRNA having the seed sequence of the microRNA miR-let-7c, or a combination thereof into one or more fetal hepatocytes. The resulting cells differentiate into mature hepatocytes that exhibit functional hepatic enzyme activity, and can be used in drug metabolism and toxicity testing, in the study of viruses that target hepatic tissue, and as therapeutics.A related method of maintaining the functional hepatic enzyme activity of primary hepatocytes over time is also disclosed. The method includes the step of transferring an external vector comprising the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-122 into one or more cultured primary hepatocytes.
Abstract:
A method for producing mature hepatocytes having functional hepatic enzyme activity from human pluripotent cells is disclosed. The method includes the step of transferring an external vector that includes a microRNA having the seed sequence of the microRNA miR-122, a DNA sequence coding for such a microRNA, a microRNA having the seed sequence of the microRNA miR-let-7c, a DNA sequence coding for such a microRNA, or a combination these, into one or more fetal hepatocytes. The resulting cells differentiate into mature hepatocytes that exhibit functional hepatic enzyme activity, and that can be used in drug metabolism and toxicity testing, in the study of viruses that target hepatic tissue, and as therapeutics.
Abstract:
Disclosed are components and methods for RNA-directed DNA cleavage and gene editing. The components include and the methods utilize a Cas9 protein from Neisseria and one or more RNA molecules in order to direct the Cas9 protein to bind to and optionally cleave or nick a target sequence.
Abstract:
This disclosure relates generally to methods for generating small hepatocyte progenitor cells (SHPCs) and hematopoietic progenitor cells (HPCs) from human embryonic stem cells, and hematopoietic progenitor cells from primary human endothelial cells and cell lines populations of small hepatocyte progenitor cells and hematopoietic progenitor cells, and uses thereof.
Abstract:
Methods for reprogramming primate somatic cells to pluripotency using an episomal vector that does not encode an infectious virus are disclosed. Pluripotent cells produced in the methods are also disclosed.
Abstract:
A method for producing mature hepatocytes having functional hepatic enzyme activity from human pluripotent cells is disclosed. The method includes the step of transferring an external vector comprising the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-122, the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-let-7c, a microRNA having the seed sequence of the microRNA miR-122, a microRNA having the seed sequence of the microRNA miR-let-7c, or a combination thereof into one or more fetal hepatocytes. The resulting cells differentiate into mature hepatocytes that exhibit functional hepatic enzyme activity, and can be used in drug metabolism and toxicity testing, in the study of viruses that target hepatic tissue, and as therapeutics.A related method of maintaining the functional hepatic enzyme activity of primary hepatocytes over time is also disclosed. The method includes the step of transferring an external vector comprising the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-122 into one or more cultured primary hepatocytes.
Abstract:
This disclosure provides genetically engineered immune cells that express an anti-GD2 chimeric antigen receptor, methods of generating these cells, and methods of treating tumors using the genetically engineered cells.
Abstract:
A method for producing mature hepatocytes having functional hepatic enzyme activity from human pluripotent cells is disclosed. The method includes the step of transferring an external vector comprising the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-122, the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-let-7c, a microRNA having the seed sequence of the microRNA miR-122, a microRNA having the seed sequence of the microRNA miR-let-7c, or a combination thereof into one or more fetal hepatocytes. The resulting cells differentiate into mature hepatocytes that exhibit functional hepatic enzyme activity, and can be used in drug metabolism and toxicity testing, in the study of viruses that target hepatic tissue, and as therapeutics.A related method of maintaining the functional hepatic enzyme activity of primary hepatocytes over time is also disclosed. The method includes the step of transferring an external vector comprising the DNA sequence coding for a microRNA having the seed sequence of the microRNA miR-122 into one or more cultured primary hepatocytes.
Abstract:
Disclosed are components and methods for RNA-directed DNA cleavage and gene editing. The components include and the methods utilize a Cas9 protein from Neisseria and one or more RNA molecules in order to direct the Cas9 protein to bind to and optionally cleave or nick a target sequence.