Abstract:
An automatic focusing device in a camera comprises drive means for moving a picture-taking lens in the direction of the optic axis so that the picture-taking lens can be focused to an object from the shortest distance to infinity, detector means having photoelectric converter means and adapted to emit a focus position signal when the image formation plane of the object by the picture-taking lens is not coincident with an optimal focusing plane and to emit a focusing signal when the image formation plane is substantially coincident with the optimal focusing plane, a shutter release operating button displaceable between a first operating position and a second operating position and adapted, when displaced to the second operating position, to release the shutter of the camera, trigger means adapted to emit an operating signal when the shutter release operating button is displaced to the first operating position, and means for controlling the drive means such that the picture-taking lens is moved in response to application of the focus position signal and the operating signal, that said movement of the lens is stopped in response to application of the operating signal and the focusing signal and that after the stoppage of the lens, said movement becomes possible only in response to re-application of the operating signal.
Abstract:
Focus detecting device comprises a focus detecting optical system for guiding the light from an object onto a focus detecting plane, focus detecting means for identifying the focusing state from the image of the object formed on the focus detecting plane, means for generating a signal corresponding to the controlled actual F-number of the photographic optical system, means for generating a correction signal corresponding to the displacement of the optimum image plane of the photographing optical system according to the change of the controlled F-number, and means for correcting the output signal of the focus detecting means according to the correction signal.
Abstract:
A variable-length code stream is read out from a position designated as a start position of an encoded stream of a block of interest, and the readout stream is decoded. Upon completion of the decoding of the variable-length code stream of the block of interest, a data length of a semi-fixed-length data stream of the block of interest is calculated. A position the data length behind the start position of the semi-fixed-length data stream is designated as a start position of an encoded stream of a next block to be decoded after the block of interest, and decoding of a variable-length code stream of the next block is started.
Abstract:
A method and an apparatus for improving three dimensional (3D) effect of a 3D image collected by a 3D photographing apparatus, and reducing visual fatigue, are provided. A feature point of a left-eye image entering through a left-eye lens and of a right-eye image entering through a right-eye lens is acquired, a disparity between the left- and right-eye images is detected, a distance between the left- and right-eye lenses is controlled so that the disparity between the left- and right-eye images becomes a previously-set reference disparity, and at least one of the left- and right-eye images is shifted so that a convergence point is placed on an object located within the left- and right-eye images.
Abstract:
A method and an apparatus for improving three dimensional (3D) effect of a 3D image collected by a 3D photographing apparatus, and reducing visual fatigue, are provided. A feature point of a left-eye image entering through a left-eye lens and of a right-eye image entering through a right-eye lens is acquired, a disparity between the left- and right-eye images is detected, a distance between the left- and right-eye lenses is controlled so that the disparity between the left- and right-eye images becomes a previously-set reference disparity, and at least one of the left- and right-eye images is shifted so that a convergence point is placed on an object located within the left- and right-eye images.
Abstract:
A motor control apparatus including: a motor including a rotating member and a stator; a housing member including a motor housing portion and a power system substrate housing portion, the motor housing portion enclosing the motor and extending in an axial direction of the rotating member, the power system substrate housing portion being integrally formed with the motor housing portion and being located is radially outside of the motor; a control system board supporting a component of a control circuit to control the motor, and including a first board portion facing the motor in the axial direction, and a second board portion extending radially from the first board portion; and a power system substrate supporting a component of a power supply circuit to supply power to the motor, the power system substrate being provided in the power system substrate housing portion.
Abstract:
A motor control apparatus including: a motor including a rotating member and a stator; a housing member including a motor housing portion and a power system substrate housing portion, the motor housing portion enclosing the motor and extending in an axial direction of the rotating member, the power system substrate housing portion being integrally formed with the motor housing portion and being located is radially outside of the motor; a control system board supporting a component of a control circuit to control the motor, and including a first board portion facing the motor in the axial direction, and a second board portion extending radially from the first board portion; and a power system substrate supporting a component of a power supply circuit to supply power to the motor, the power system substrate being provided in the power system substrate housing portion.
Abstract:
Provided is a novel aromatic amine derivative with specified structure. Also provided is an organic electroluminescence device having one or more organic thin-film layers including at least a luminescent layer interposed between a cathod and an anode, in which at least one of the organic thin-film layers contains the above aromatic amine derivative alone or as a component of mixture. As a result, there is provided an organic electroluminescence device that has high emission luminance and high heat resistance, excelling in high-temperature storage ability and has long life, and provided an aromatic amine derivative for realizing the organic electroluminescence device.
Abstract:
An image formation apparatus includes a reception section, a function section, an image formation section and a power output device. The reception section is configured to be connected to a communication line over which image information and power are transmitted. The reception section receives the image information and the power transmitted over the communication line. The function section receives supply of the power received by the reception section, to function. The image formation section forms an image on a medium based on the image information received by the reception section or the function section. The power output device receives power supply from a commercial power supply. The power output device outputs power of a predetermined voltage to the image formation section.
Abstract:
A phototherapy device which obtains an advantageous therapeutic effect and suppresses side effects at least to a certain degree by irradiation of diseased sites with therapeutic radiation with a spectrum in the UV-B radiation wavelength range that is continuous at least in the wavelength range of at most 303 nm with a lower boundary wavelength value of at least 297 nm. The phototherapy device has a light source which emits light with a spectrum having an emission peak in the wavelength range from 300 nm to 315 nm and which is continuous in the wavelength range of this emission peak at least up to 295 nm; and a radiation emission window in which the light from the light source is incident and via which the therapeutic radiation is emitted with a spectrum with a lower boundary value in the wavelength range from 297 nm to 303 nm.