Abstract:
Provided is a power supply control device including a first power supply which is a power supply source of an operating unit and a main control unit, a second power supply which supplies minimum necessary power to create a power-saving state, a switching unit that switches to a power supply source selected from the first and second power supplies, a receiving unit that receives an external request signal, a determining unit that determines whether the external request signal is a switching request signal or a recovery request signal, a switching controller that switches the power supply source to the first power supply when a power-saving state is created, and the external request signal is the switching request signal, and a recovery unit that recovers at least the main control unit when the recovery request signal is received within a predetermined period after the power supply source is switched.
Abstract:
A power-supply control device includes a power-supply-state transition control section, body-capable-of-movement detection sections, and an instruction section. The power-supply-state transition control section shifts a state of an operation target section from one state to another state among power-supply states and a non-power-supply state. The body-capable-of-movement detection sections detect a body capable of movement in a region. The instruction section provides, on the basis of results of detection of the body capable of movement by the body-capable-of-movement detection sections, at least an instruction for shifting between one of the power-supply states and the non-power-supply state, among instructions for shifting the state of the operation target section from one state to another state with the power-supply-state transition control section.
Abstract:
A power-supply monitoring device includes a power-supply control section, a detection section, a determination section, a control section, and an attachment section. The power-supply control section receives supply of power from a mains power source section, and selectively sets a power supply mode and a power saving mode. The detection section detects, in a predetermined region, a body capable of movement including a user who intends to use a processing section. When the body capable of movement is detected, the determination section determines whether switching from the power saving mode to the power supply mode is to be performed to obtain a result. The control section controls the power-supply control section on the basis of the result. The attachment section is attached to the detection section so that a detection region including a position or having an area for identifying the user is adjustable.
Abstract:
A power supply system includes: a first device that commands an external device to perform processing, and is configured to supply electric power to the external device; a second device that is connected to the first device through a communications line, and that performs the processing in accordance with the command received from the first device; and a request unit that requests the first device to supply to the second device an amount of electric power needed for the second device performing the processing commanded by the first device, the first device determining whether or not to supply electric power to the second device, in accordance with at least one of; (i) content of the command sent to the second device, and (ii) the amount of electric power requested by the request unit and an amount of electric power which the first device is capable of supplying.
Abstract:
An outboard motor comprises an engine cover having an air intake opening for taking in air, an engine disposed in the engine cover, and an AC generator disposed in the engine cover for generating electricity to drive the engine. A cooling air guide member is disposed in the engine cover for guiding the air taken in by the air intake opening towards the AC generator. The cooling air guide member has a bottom wall, a pair of side walls extending upwardly from opposite side edges of the bottom wall, and an opening extending through the bottom wall so that the air taken in by the intake opening is guided by the side walls and the bottom wall to flow through the opening to cool the AC generator.
Abstract:
Disclosed is a power supply control apparatus including plural processing units, a mobile body detection unit, a determination unit, a transition unit, a mobile body confirmation unit, and a controller that controls the transition unit such that states of all of the processing units transit to the powered-off state when a result of confirmation in the mobile body confirmation unit represents absence and controls the transition unit such that the states of the plural processing units selectively and individually transit to the powered-off state when a result of confirmation in the mobile body confirmation unit represents presence.
Abstract:
A power-supply control device includes a power-supply control section, a first detection section that detects whether or not a body capable of movement is moving, a second detection section that detects whether or not the body capable of movement exists, and an instruction section. The power-supply control section receives supply of power from a mains power source section, and selectively sets a power supply mode, in which power is supplied to a processing section, and a power saving mode, in which supply of power to the processing section is stopped. The first and second detection sections and the instruction section are caused to operate at least in the power saving mode. The instruction section provides, for the power-supply control section, an instruction for switching between the power supply mode and the power saving mode.
Abstract:
A moving object detecting device includes a detecting device body that includes a detection unit formed in a chassis covering the inside of an apparatus and disposed to correspond to a monitoring window of which at least an aperture area or an aperture size is restricted and which monitors a moving object approaching the apparatus and a circuit board unit controlling a signal output from the detection unit and is disposed so that some optical axes among optical axes having detection surfaces of plural infrared detecting elements included in the detection unit, as focal points passes through the monitoring window and the other optical axes are blocked by the chassis, and an optical member that is formed in an inner wall of the chassis and that deflects the other optical axes of the infrared detection elements to pass through the monitoring window.
Abstract:
A power feed system includes: an information device; a terminal device that is connected the information processing device, and that has a power source; and a selection unit that selects, as power utilized by the terminal device, at least one of first power from the power source of the terminal device and second power supplied from the information processing device according to an operating state of the terminal device.