Abstract:
A hybrid drive assembly having an e-motor with a housing fixed stator and a rotor that connects to a transmission. The e-motor rotor includes a rotor support having a mounting flange with a stop at one end. A diaphragm spring clamps a second rotor ring, a rotor stack, and a first rotor ring against the stop to rotationally fix the rotor stack to the mounting flange. A drive plate assembly for connection to a crankshaft includes an output flange that is: (a) frictionally engaged to the diaphragm spring and/or the second rotor ring such that upon application of a torque spike the output flange rotates relative to the diaphragm spring and/or the second rotor ring, or (b) rotationally fixed to the diaphragm spring such that upon application of a torque spike the diaphragm spring rotates relative to the mounting flange, forming in each case an overload clutch.
Abstract:
An electric fan with a self-cleaning mode to energise rotating fan blades in alternate forward and reverse directions to create a vibration in order to shake built-up dust or dirt particles from the blades in a frequency at which the rotational direction is alternated set to a known or detected resonant frequency of the blades thereby excite resonant modes and maximise the amplitude of vibrations. The self-cleaning operation may be triggered by detection of excessive/abnormal loading on the motor. The fan may be operated in a vibration detecting mode over a range of rotational speeds to locate speeds that produce resonance, or to detect a fault with the fan. Motor reversal frequencies corresponding to resonance-inducing speeds may be used in the self-cleaning mode. The vibration detecting mode may be carried out while the at least one blade is rotated in a direction opposite to its normal operational rotational direction.
Abstract:
Disclosed is a motor unit including: an electric motor; a motor housing (6) configured to accommodate the electric motor; and a control substrate (70) including a sensor element (72S) to detect a position of an inner rotor of the electric motor in a rotational direction. The motor housing (6) includes a substrate accommodating portion (80) configured to accommodate at least a portion of the control substrate (70); a positioning portion (81) that is formed in the substrate accommodating portion (80), and positions the control substrate (70); and a screw configured to fix a stator of the electric motor to the positioning portion (81).
Abstract:
A motor includes a rotating portion with a shaft extending along a rotation axis and a rotor that rotates together with the shaft, a stationary portion with a stator located radially outside of the rotor and a magnetic sensor located above the rotor to detect a rotational position of the rotor. The rotor includes a rotor core, a rotor magnet located radially outside of the rotor core and under the magnetic sensor, in contact with the rotor core or located opposite to the rotor core with a first gap therebetween. A recessed portion is recessed from each of an upper end surface and an outer circumferential surface of the rotor core. An inner circumferential surface of a lower end portion of the rotor holder is fixed to a radially inner surface of the recessed portion.
Abstract:
In an electric motor, a magnetic bearing generates an electromagnetic force between multiple permanent magnets and a coil and rotatably supports an other side of a rotation shaft in an axis line direction. The rotation shaft is configured to be capable of being inclined with a rotation center line using a bearing side of the rotation shaft as a fulcrum. An electronic control device controls a current that flows to the coil such that an axis line of the rotation shaft approaches the rotation center line due to a supporting force which is the electromagnetic force between the multiple permanent magnets and the coil. Accordingly, the rotation shaft is rotatably supported to be freely rotatable by a magnetic bearing and the bearing.
Abstract:
A motor includes a frame, a shaft rotatably mounted onto the frame, and at least one disc mounted onto the shaft. At least one permanent magnet is mounted on the disc, and at least one electromagnet and at least one coil are mounted to the frame in rotational magnetic proximity to the permanent magnet. A battery is connectable to the electromagnet and the coil for energizing the electromagnet and for receiving electrical current from the coil for charging the battery. A relay switch controls the transmission of electrical power from the battery to the electromagnet. A sensor generates a signal to the relay switch to activate electrical power to the electromagnet upon sensing that the permanent magnet is positioned with respect to the electromagnet such that a magnetic force generated by the electromagnet would be effective for inducing movement of the permanent magnet and consequent rotation of the disc.
Abstract:
A mechatronic assembly for linearly driving a member includes a control unit and an actuator, the control unit including a control algorithm and a power bridge, the algorithm controlling the power bridge, the power bridge providing a bifilar electrical signal consisting of a torque signal and a direction signal, the actuator including an electric motor which does not have an N-phase multiphase brush, binary probes for detecting the position of the rotor of the motor, a device for transforming the rotational movement of the rotor into a linear movement of the control member, power switches capable of powering the N phases of the motor on the basis of the bifilar electrical signal, and the state of the power switches is controlled directly by a signal from the detection probes.
Abstract:
Encoder including a moveable part with at least one magnetic dipole, at least one Hall Effect sensor with a sensitive area arranged to detect a magnetic field created by the magnetic dipole, at least one circuit board with a main thickness and having an attachment portion on which the Hall Effect sensor is mounted, where the Hall Effect sensor is a semiconductor die sensor with the sensitive area arranged on an external face of the semiconductor die, where the Hall Effect sensor is flip chip mounted onto the attachment portion of the circuit board, with the sensitive area in contact with the circuit board, and where the attachment portion is arranged between the Hall Effect sensor and the magnetic dipole and presents a reduced thickness compared to the main thickness of the rest of the circuit board.
Abstract:
The present invention provides an auxiliary excitation winding set to be installed at the rotary part of the electric machine (104) composed of a rotary part of the permanent magnetic electric machine or a rotary part of the reluctance electric machine of the switched DC electric machine with conduction ring and brush (1000), and an electric conduction ring and brush device (107) is served as an interface for transmitting the electric power, thereby inputting the excitation electric power to the auxiliary excitation winding set; and through controlling the value and the polarity of excitation voltage and current, the magnetic pole of the rotary part of magnet-motive electric machine (104) of the switched DC electric machine with conduction ring and brush (1000) can be performed with the excitation effect of auxiliary excitation or differential excitation or auxiliary compound excitation or differential compound excitation.
Abstract:
A power tool (1) includes a brushless motor (8) having a stator (9) and a rotor (10). The stator (9) includes: a tubular stator core (60); front and rear insulators (61, 62) fixed to the stator core; and coils (64), which are wound around a plurality of teeth (63) on the stator core. The rotor (10) includes: a rotor core (67) disposed within the stator; a rotary shaft (11) fixed to the rotor core; and one or more permanent magnets (68) fixed to the rotor core. A sensor-circuit board (65) detects the position(s) of the permanent magnet(s) and is fixed to the stator. One or more notched parts (91) is/are formed, in an outer circumference of the sensor-circuit board, between circumferentially-adjacent teeth in an axial direction of the stator. The notch part(s) allow(s) air for cooling the brushless motor to pass more easily through the interior of the stator.