摘要:
We disclose a method of depositing a metal seed layer on a wafer substrate comprising a plurality of recessed device features. The method comprises depositing a first portion of the metal seed layer on the wafer via plasma deposition at a sufficient ratio of wafer substrate bias to DC source power that bottom coverage is achieved while resputtering of surfaces of the recessed device features is inhibited. The method also comprises depositing a second portion of the metal seed layer at a ration of substrate RF bias to DC source power such that resputtering is not inhibited.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer, A first protective layer of material is deposited on a substrate surface using traditional sputtering or ion deposition sputtering, in combination with sufficiently low substrate bias that a surface onto which the layer is applied is not eroded away or contaminated during deposition of the protective layer. Subsequently, a sculptured second layer of material is applied using ion deposition sputtering at an increased substrate bias, to sculpture a shape from a portion of the first protective layer of material and the second layer of depositing material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces.
摘要:
We disclose a method of depositing a metal seed layer on a wafer substrate comprising a plurality of recessed device features. The method comprises depositing a first portion of a copper seed layer on a wafer substrate without excessive build-up on the openings of each of the plurality of recessed device features, while obtaining bottom coverage without substantial sputtering of the bottom surface. The method also comprises depositing a second portion of the metal seed layer while redistributing at least a portion of the bottom coverage material to the sidewalls of each recessed device feature, to provide a uniform seed layer coverage over the interior surface of the recessed device features.
摘要:
We disclose a method of applying a sculptured layer of material on a semiconductor feature surface using ion deposition sputtering, wherein a surface onto which the sculptured layer is applied is protected to resist erosion and contamination by impacting ions of a depositing layer. A first protective layer of material is deposited on a substrate surface using traditional sputtering or ion deposition sputtering, in combination with sufficiently low substrate bias that a surface onto which the layer is applied is not eroded away or contaminated during deposition of the protective layer. Subsequently, a sculptured second layer of material is applied using ion deposition sputtering at an increased substrate bias, to sculpture a shape from a portion of the first protective layer of material and the second layer of depositing material. The method is particularly applicable to the sculpturing of barrier layers, wetting layers, and conductive layers upon semiconductor feature surfaces.
摘要:
The present disclosure pertains to our discovery that residual stress residing in a tantalum film or tantalum nitride film can be controlled (tuned) during deposition by adjusting at least two particular process variables which have counteracting effects on the residual film stress. By tuning individual film stresses within a film stack, it is possible to balance stresses within the stack. Process variables of particular interest include: power to the sputtering target process chamber pressure (i.e., the concentration of various gases and ions present in the chamber); substrate DC offset bias voltage (typically an increase in the AC applied substrate bias power); power to an ionization source (typically a coil); and temperature of the substrate upon which the film is deposited. The process chamber pressure and the substrate offset bias most significantly affect the film tensile and compressive stress components, respectively. The most advantageous tuning of a sputtered film is achieved using high density plasma sputter deposition, which provides for particular control over the ion bombardment of the depositing film surface. When the tantalum or tantalum nitride film is deposited using high density plasma sputtering, power to the ionization source can be varied for stress tuning of the film. We have been able to reduce the residual stress in tantalum or tantalum nitride films deposited using high density plasma sputtering to between about 6×10+9 dynes/cm2 and about −6×10+9 dynes/cm2 using techniques described herein.
摘要翻译:本公开涉及我们的发现,即通过调节对剩余膜应力具有抵消作用的至少两个特定工艺变量,可以在沉积期间控制(调整)驻留在钽膜或氮化钽膜中的残余应力。 通过调整薄膜叠层内的各个薄膜应力,可以平衡叠层内的应力。 特别感兴趣的过程变量包括:溅射靶处理室压力的功率(即存在于室中的各种气体和离子的浓度); 衬底DC偏移偏置电压(通常为施加衬底偏置功率的AC增加); 电源(通常为线圈); 以及沉积膜的基板的温度。 处理室压力和基板偏移偏压分别最显着地影响膜的拉伸和压应力分量。 使用高密度等离子体溅射沉积来实现溅射膜的最有利的调谐,其提供对沉积膜表面的离子轰击的特定控制。 当使用高密度等离子体溅射沉积钽或氮化钽膜时,电离源的功率可以改变以用于膜的应力调谐。 使用本文所述的技术,我们已经能够将使用高密度等离子体溅射沉积的钽或氮化钽膜中的残余应力减小到约6×10 9 + 9达因/ cm 2和约-6×10 9达因/ cm 2之间。
摘要:
The present disclosure pertains to our discovery that residual stress residing in a tantalum film or tantalum nitride film can be controlled (tuned) by controlling particular process variables during film deposition. By tuning individual film stresses within a film stack, it is possible to balance stresses within the stack. Process variables of particular interest include: power to the sputtering target; process chamber pressure (i.e., the concentration of various gases and ions present in the chamber); substrate DC offset bias voltage (typically an increase in the AC applied substrate bias power); power to an ionization source (typically a coil); and temperature of the substrate upon which the film is deposited. The process chamber pressure and the substrate offset bias most significantly affect the film tensile and compressive stress components, respectively. The most advantageous tuning of a sputtered film is achieved using high density plasma sputter deposition, which provides for particular control over the ion bombardment of the depositing film surface. When the tantalum or tantalum nitride film is deposited using high density plasma sputtering, power to the ionization source can be varied for stress tuning of the film. We have been able to reduce the residual stress in tantalum or tantalum nitride films deposited using high density plasma sputtering to between about 6.times.10.sup.+9 dynes/cm.sup.2 and about -6.times.10.sup.+9 dynes/cm.sup.2 using techniques described herein. The tantalum and tantalum nitride films can also be tuned following deposition using ion bombardment of the film surface and annealing of the deposited film.
摘要翻译:本公开涉及我们的发现,通过在膜沉积期间控制特定的工艺变量,可以控制(调整)驻留在钽膜或氮化钽膜中的残余应力。 通过调整薄膜叠层内的各个薄膜应力,可以平衡叠层内的应力。 特别感兴趣的过程变量包括:溅射靶的功率; 处理室压力(即存在于室中的各种气体和离子的浓度); 衬底DC偏移偏置电压(通常为施加衬底偏置功率的AC增加); 电源(通常为线圈); 以及沉积膜的基板的温度。 处理室压力和基板偏移偏压分别最显着地影响膜的拉伸和压应力分量。 使用高密度等离子体溅射沉积来实现溅射膜的最有利的调谐,其提供对沉积膜表面的离子轰击的特定控制。 当使用高密度等离子体溅射沉积钽或氮化钽膜时,电离源的功率可以改变以用于膜的应力调谐。 使用本文所述的技术,我们已经能够将使用高密度等离子体溅射沉积的钽或氮化钽膜中的残余应力减小到约6×10 9 + 9达因/ cm 2和约-6×10 9达因/ cm 2之间。 也可以在使用离子轰击膜表面和沉积膜的退火进行沉积之后调整钽和氮化钽膜。
摘要:
A method of depositing a duffusion barrier layer with overlying conductive layer or fill which lowers resistivity of a semiconductor device interconnect. The lower resistivity is achieved by inducing the formation of alpha tantalum within a tantalum-comprising barrier layer.
摘要:
A method of filling trenches or vias on a semiconductor workpiece surface with copper using sputtering techniques. A copper wetting layer and a copper fill layer may both be applied by sputtering techniques. The thin wetting layer of copper is applied at a substrate surface temperature ranging between about 20° C. to about 250° C., and subsequently the temperature of the substrate is increased, with the application of the sputtered copper fill layer beginning at above at least about 200° C. and continuing while the substrate temperature is increased to a temperature as high as about 600° C. Preferably the substrate temperature during application of the sputtered fill layer ranges between about 300° C. and about 500° C.
摘要:
A method of depositing a metal seed layer with underlying barrier layer on a wafer substrate comprising a plurality of recessed device features. A first portion of the barrier layer is deposited on the wafer substrate without excessive build-up of barrier layer material on the openings to the plurality of recessed device features, while obtaining bottom coverage without substantial sputtering of the bottom surface. Subsequently, a metal seed layer is deposited using the same techniques used to deposit the barrier layer, to avoid excessive build up of metal seed layer material on the openings to the features, with minimal sputtering of the barrier layer surface.
摘要:
We disclose a method of depositing a metal seed layer on a wafer substrate comprising a plurality of recessed device features. The method comprises depositing a first portion of a copper seed layer on a wafer substrate without excessive build-up on the openings of each of the plurality of recessed device features, while obtaining bottom coverage without substantial sputtering of the bottom surface. The method also comprises depositing a second portion of the metal seed layer while redistributing at least a portion of the bottom coverage material to the sidewalls of each recessed device feature, to provide a uniform seed layer coverage over the interior surface of the recessed device features.