Abstract:
A substrate processing apparatus includes a chuck configured to attract and hold a substrate; an observer configured to observe multiple positions within a second surface of the substrate attracted to and held by the chuck, the second surface being opposite to a first surface thereof which is in contact with the chuck; and an analyzer configured to analyze observation results of the multiple positions. When a singularity regarding a height from a surface of the chuck attracting and holding the substrate exists on the second surface, the analyzer specifies a position of the singularity on the chuck.
Abstract:
A wiping pad includes: a scraping edge provided to cross a long side direction of a discharge port and come into contact with the discharge port and nozzle side surfaces, and a lead-out passage provided ahead of the scraping edge in a moving direction along a nozzle long side direction to drain a treatment solution scraped away with the scraping edge, wherein the lead-out passage is a V-shaped groove formed along the moving direction on a pad upper surface side, and the V-shaped groove has the scraping edge formed at a rear end edge portion thereof and is formed to gradually increase in groove width and depth toward a front thereof from the scraping edge.
Abstract:
A substrate positioning apparatus includes a holder and a rotating device. The holder is configured to hold a substrate. The rotating device is configured to rotate the holder. The rotating device includes a rotation shaft, a bearing member, a base member, a driving unit and a damping device. The rotation shaft is fixed to the holder. The bearing member is configured to support the rotation shaft in a non-contact state. The bearing member is fixed on the base member. The driving unit is configured to rotate the rotation shaft. The damping device includes a rail connected to the base member and a slider connected to the rotation shaft, and is configured to produce a damping force against a relative operation between the rotation shaft and the base member by a resistance generated between the rail and the slider.
Abstract:
A bonding apparatus configured to bond a first substrate and a second substrate includes a first holder configured to hold the first substrate; a second holder configured to hold the second substrate; a first imaging device provided at the first holder and configured to image the second substrate held by the second holder; a first light irradiating device provided at the first holder and configured to irradiate light to the second substrate when the second substrate is imaged; a second imaging device provided at the second holder and configured to image the first substrate held by the first holder; and a second light irradiating device provided at the second holder and configured to irradiate light to the first substrate when the first substrate is imaged. Each of the first light irradiating device and the second light irradiating device is connected to a first light source configured to irradiate white light.
Abstract:
A bonding system includes a substrate transfer device configured to transfer a first substrate and a second substrate in a normal pressure atmosphere, a surface modifying apparatus configured to modify surfaces of the first substrate and the second substrate to be bonded with each other in a depressurized atmosphere, a load lock chamber in which the first substrate and the second substrate are delivered between the substrate transfer device and the surface modifying apparatus and in which an internal atmosphere of the load lock chamber is switchable between an atmospheric pressure atmosphere and the depressurized atmosphere, a surface hydrophilizing apparatus configured to hydrophilize the modified surfaces of the first substrate and the second substrate, and a bonding apparatus configured to bond the hydrophilized surfaces of the first substrate and the second substrate by an intermolecular force.
Abstract:
A wiping pad includes: a scraping edge provided to cross a long side direction of a discharge port and come into contact with the discharge port and nozzle side surfaces, and a lead-out passage provided ahead of the scraping edge in a moving direction along a nozzle long side direction to drain a treatment solution scraped away with the scraping edge, wherein the lead-out passage is a V-shaped groove formed along the moving direction on a pad upper surface side, and the V-shaped groove has the scraping edge formed at a rear end edge portion thereof and is formed to gradually increase in groove width and depth toward a front thereof from the scraping edge.
Abstract:
A bonding apparatus includes a first holder, a second holder, a moving unit, a housing, an interferometer, a first gas supply and a second gas supply. The first holder is configured to attract and hold a first substrate. The second holder is configured to attract and hold a second substrate. The moving unit is configured to move a first one of the first holder and the second holder in a horizontal direction with respect to a second one thereof. The interferometer is configured to radiate light to the first one or an object moved along with the first one to measure a horizontal distance thereto. The first gas supply is configured to supply a clean first gas to an inside of the housing. The second gas supply is configured to supply a second gas to a space between the interferometer and the first one or the object.
Abstract:
A bonding apparatus configured to bond substrates includes a first holder configured to vacuum-exhaust a first substrate to attract and hold the first substrate on a bottom surface thereof; a second holder disposed under the first holder and configured to vacuum-exhaust a second substrate to attract and hold the second substrate on a top surface thereof; a rotator configured to rotate the first holder and the second holder relatively; a moving device configured to move the first holder and the second holder relatively in a horizontal direction; three position measurement devices disposed at the first holder or the second holder rotated by the rotator and configured to measure a position of the first holder or the second holder; and a controller configured to control the rotator and the moving device based on measurement results of the three position measurement devices.
Abstract:
A bonding apparatus includes a first holder, a second holder, a first interferometer, a housing, a gas supply and an airflow control cover. The first holder attracts and holds the first substrate. The second holder attracts and holds the second substrate. The first interferometer measures, by radiating light to the second holder or a first object which is moved along with the second holder in the first horizontal direction, a distance to the second holder or the first object in the first horizontal direction. The housing accommodates therein the first holder, the second holder and the first interferometer. The gas supply is provided at a lateral side of the housing, and supplies a gas into the housing. The airflow control cover is provided within the housing, and redirects a part of a flow of the gas supplied from the gas supply toward a first path of the light.
Abstract:
A bonding apparatus configured to bond substrates includes a first holder configured to vacuum-exhaust a first substrate to attract and hold the first substrate on a bottom surface thereof; a second holder disposed under the first holder and configured to vacuum-exhaust a second substrate to attract and hold the second substrate on a top surface thereof; a rotator configured to rotate the first holder and the second holder relatively; a moving device configured to move the first holder and the second holder relatively in a horizontal direction; three position measurement devices disposed at the first holder or the second holder rotated by the rotator and configured to measure a position of the first holder or the second holder; and a controller configured to control the rotator and the moving device based on measurement results of the three position measurement devices.