Abstract:
The invention provides a method of estimating free light chain production (FLC) in a subject comprising (i) determining an amount of FLC in a sample from the subject; and (ii) correcting the amount of FLC in the sample for FLC cleared from the source of the sample by glomerular filtration and by reticuloendothelial (RE) clearance.
Abstract:
The application discloses a method of determining the severity of symptoms in a patient comprising (i) producing a triage score, such as an early warning score (EWS) modified early warning score (MEWS), paediatric early warning score (PEWS), NHS early warning score (NEWS), simple clinical score (SCS), rapid emergency score (REMS) or mortality in emergency department sepsis score for the patient, (ii) measuring an amount of free light chains (FLC), preferably combined free light chains (cFLC), in a sample from the patient, and (iii) using the triage score and the amount of FLC measured to assess the severity of symptoms in the patient. This also allows patients to be triaged to provide better treatment of them.
Abstract:
A method for analyzing protein(s) in a sample using an immunoassay kit includes creating protein-reducing and/or protein-denaturing conditions by contacting the sample with a reducing and/or denaturing agent provided in the immunoassay kit, to provide a partially or fully denatured protein population. One or both of a presence and an amount of one or more protein-associated analytes are determined under the created protein-reducing and/or protein-denaturing conditions by contacting the partially or fully denatured protein population with one or more specific antibodies or binding fragments thereof provided in the immunoassay kit. The one or more specific antibodies or binding fragments thereof include one or more chemically-introduced non-disulfide cross-links between at least one heavy chain or binding fragment thereof and at least one light chain or binding fragment thereof.
Abstract:
The invention provides a method for characterising a plasma cell associated disease in a patient comprising: (i) providing at least one sample from the patient; (ii) determining in the sample(s) two or more of; (a) the κ:λ free light chain (FLC) ratio; (b) the ratio of κ light chains bound to a class of heavy chain:λ light chain bound to the same class of heavy chain (HLCκ:HLC λ ratio); (c) the total amount of FLC in the samples and (d) the total amount of κ light chains bound to the heavy chain class plus λ light chains bound to the same heavy chain class (total HLC); (iii) comparing each ratio or amount from (a) (b), (c) and/or (d) to predetermined values and assigning a score to each amount or ratio; and (iv) using the scores to characterise the plasma cell associated disease. Apparatus configured to carry out the method of the invention are also provided. The invention also provides a kit comprising, in combination, (i) anti-κ FLC specific and anti-λ FLC specific antibodies or fragments thereof and (ii) anti-κ heavy chain class specific and anti-λ heavy chain class specific antibodies or fragments thereof, optionally mixed together.
Abstract:
The Invention provides a method of immunopurifying and characterising an analyte from a sample comprising: (i) providing a predetermined amount of a control substance bound to a substrate via a linkage cleavable by acidic pH and/or reducing agents and optionally additional analyte specific antibodies or fragments thereof bound to a substrate, wherein the control substance is specific for the analyte or is not specific for the analyte; (ii) allowing analyte when present in the sample to bind to the control substance or said optional additional analyte-specific antibodies or fragments, wherein the control substance bound to the substrate (i) may be provided after contacting the analyte with the optional additional analyte-specific antibodies (ii); (iii) washing unbound material away from the substrate; (iv) acid eluting the analyte bound thereto, from at least one substrate; (v) performing mass spectrometry to identify two or more peaks, at least one peak of which is associated with the presence of the analyte and at least a second peak which is associated with at least a portion of the control substance; and (vi) comparing the size or intensity of the second peak to a predetermined calibration value to allow the first peak associated with the analyte to be calibrated.