Abstract:
The proposed technology relates to methods, devices and network nodes for enabling mitigation of interference between an External Wireless System, EWS, and a mobile communication system. For example, a UE may detect (S1) an EWS event involving EWS operation interfering with the operation of the mobile communication system provided at least one interference condition is fulfilled. The interference condition(s) includes a first condition based on a frequency relation between a representation of an operating frequency of the EWS and a representation of a reference frequency. The UE may then enable (S2) the mitigation of interference based on event information representing the EWS event.
Abstract:
Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
Abstract:
Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
Abstract:
A system, method, and apparatus for managing interference are presented. The interference may be between i) a fixed wireless link, FL, formed by a first FL node and a second FL node which communicate at a frequency f1 and ii) a radio access network, RAN, node. The method may comprise the first FL node monitoring radio link quality, QL, of fixed wireless link signals at f1. The first FL node may determine whether QL is worse than a predetermined QL threshold. If QL is worse than the predetermined QL threshold, the first FL node may measure, during a silent period, how much one or more signals transmitted from the RAN node 108 interferes with the first FL node at the f1. The first FL node may transmit, to an interference mitigation controller, interference measurement information which indicates how much the RAN node interferes with the first FL node at f1.
Abstract:
Methods, apparatuses, and computer program products provide for routing information between nodes of a radio network. A quality metric is received at a network node that indicates a quality of at least one channel of a plurality of channels in the network. A virtual network is generated that includes one or more routes between a source node and a destination node. A modified virtual network is generated based at least in part on the quality metric and the virtual network, and is then used to determine an optimized route between the source node and destination node. The determination includes a joint selection of one or more of a plurality of network nodes and the plurality of the channels.
Abstract:
Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
Abstract:
Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
Abstract:
Methods, apparatuses, and computer program products for communicating channel assessment, channel information, and routing information between a spectrum controller and radio resource manager. A spectrum controller obtains channel information and classifies a number of radio channels of a network as available, partially available, or unavailable. The availability information is sent to a radio resource manager, which can use the information to determine a routing solution. The radio resource manager can request that the spectrum controller perform an access negotiation for a partially available channel. Based on the result of the negotiation, the radio resource manager may re-route information in the network.
Abstract:
Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
Abstract:
Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.