Abstract:
Liquid droplet manipulation instrument has electrode array for inducing movement of a droplet by electrowetting, substrate supporting the array and control with electrode selector connected to a voltage control. The selector selects each electrode and provides each with a controlled voltage. The control includes central processing unit for providing the selected electrode with an individual voltage pulse which is a drive voltage or a ground voltage or a stop voltage. The control defines a path for movement of a liquid portion of a larger volume that covers more than one electrode by the simultaneous selection of a group of two or more subsequent drive electrodes and to provide each selected drive electrode with a drive voltage pulse along the path. The control simultaneously provides a group of two or more electrodes adjacent to or identical with the pulsed drive electrodes, with a ground or stop voltage pulse.
Abstract:
A biological sample processing system (1) includes a liquid droplet manipulation instrument (20) with an electrode array (21) for inducing a movement of a liquid droplet (19) by electrowetting; a substrate (22); and a control unit (23). An electrode selector (34) of the control unit (23) is configured to individually select and provide each electrode (35) of the electrode array (21) with a voltage. The control unit (23) includes a central processing unit (36) for individually selecting at least one electrode (35) and for providing the selected electrode(s) (35) with an individual voltage pulse. The biological sample processing system (1) also includes a cartridge (40) with a container (2).
Abstract:
Cartridge has a container with at least one well having a channel from a well opening to a container base side, protrusions on the container base side, and a flat polymer film with a hydrophobic upper surface kept at a distance from the base side by the protrusions. The container and film are reversibly attachable to a liquid droplet manipulation instrument so the lower surface of the film abuts at least one electrode array of the instrument. The container enables displacement of a liquid droplet from a well through the channel onto the hydrophobic upper surface and above the electrode array. The instrument has a control unit with a voltage control and an electrode selector for individually selecting each electrode of the electrode array and for providing the selected electrode with a voltage to controlling guided movement of a liquid droplet by electrowetting. A kit and method are also disclosed.
Abstract:
A cartridge manipulates samples in liquid droplets with an electrode array when a working film is placed on the array. The cartridge has a body with lower surface and wells to hold samples, each with a bottom opening to release liquid. A piercable bottom structure seals the bottom openings. A working film below the body has a hydrophobic upper surface. A peripheral spacer connects the working film to the body and forms a gap is between the body and surface. A top piercing system located in at least one of the wells has a piston and a piercing element, the piston being movable in the well and the piercing element piercing the piercable bottom structure for releasing a sample from a well into the gap.
Abstract:
A disposable cartridge used in a digital microfluidics system has a bottom layer with first hydrophobic surface, a rigid cover plate with second hydrophobic surface, and a gap there-between. The bottom layer is a flexible film on an uppermost surface of a cartridge accommodation site of a system, attracted to and spread over the uppermost surface by an underpressure. A lower surface of the plate and the flexible bottom layer are sealed to each other. The assembled cartridge is removed from the cartridge accommodation site in one piece and potentially includes samples and processing fluids. The system has a base unit and a cartridge accommodation site with an electrode array of individual electrodes and a central control unit for controlling selection of individual electrodes and for providing these electrodes with individual voltage pulses for manipulating liquid droplets within the gap by electrowetting.
Abstract:
A biological sample processing system (1) includes a liquid droplet manipulation instrument (20) with an electrode array (21) for inducing a movement of a liquid droplet (19) by electrowetting; a substrate (22); and a control unit (23). An electrode selector (34) of the control unit (23) is configured to individually select and provide each electrode (35) of the electrode array (21) with a voltage. The control unit (23) includes a central processing unit (36) for individually selecting at least one electrode (35) and for providing the selected electrode(s) (35) with an individual voltage pulse. The biological sample processing system (1) also includes a cartridge (40) with a container (2).
Abstract:
A cartridge has a container with at least one well, protrusions distributed on the container base side, and a flat polymer film having a lower surface and a hydrophobic upper surface kept at a distance (d) to the container base side by the protrusions. The container and the film are reversibly attachable to a liquid droplet manipulation instrument so that the lower surface of the film abuts at least one electrode array of the instrument. The container enables displacement of at least one liquid droplet from a well onto the hydrophobic upper surface of the flat polymer film and above the electrode array. The liquid droplet manipulation instrument comprises a control unit with a voltage control and an electrode selector for individually selecting each electrode of the electrode array and for providing the selected electrode with a voltage and thus controlling a guided movement of a liquid droplet on the hydrophobic upper surface of the flat polymer film by electrowetting. Also disclosed are a corresponding kit and method.
Abstract:
Cartridge has a container with at least one well having a channel from a well opening to a container base side, protrusions on the container base side, and a flat polymer film with a hydrophobic upper surface kept at a distance from the base side by the protrusions. The container and film are reversibly attachable to a liquid droplet manipulation instrument so the lower surface of the film abuts at least one electrode array of the instrument. The container enables displacement of a liquid droplet from a well through the channel onto the hydrophobic upper surface and above the electrode array. The instrument has a control unit with a voltage control and an electrode selector for individually selecting each electrode of the electrode array and for providing the selected electrode with a voltage to controlling guided movement of a liquid droplet by electrowetting. A kit and method are also disclosed.
Abstract:
A disposable cartridge used in a digital microfluidics system has a bottom layer with first hydrophobic surface, a rigid cover plate with second hydrophobic surface, and a gap there-between. The bottom layer is a flexible film on an uppermost surface of a cartridge accommodation site of a system, attracted to and spread over the uppermost surface by an underpressure. A lower surface of the plate and the flexible bottom layer are sealed to each other. The assembled cartridge is removed from the cartridge accommodation site in one piece and potentially includes samples and processing fluids. The system has a base unit and a cartridge accommodation site with an electrode array of individual electrodes and a central control unit for controlling selection of individual electrodes and for providing these electrodes with individual voltage pulses for manipulating liquid droplets within the gap by electrowetting.
Abstract:
Liquid droplet manipulation instrument has electrode array for inducing movement of a droplet by electrowetting, substrate supporting the array and control with electrode selector connected to a voltage control. The selector selects each electrode and provides each with a controlled voltage. The control includes central processing unit for providing the selected electrode with an individual voltage pulse which is a drive voltage or a ground voltage or a stop voltage. The control defines a path for movement of a liquid portion of a larger volume that covers more than one electrode by the simultaneous selection of a group of two or more subsequent drive electrodes and to provide each selected drive electrode with a drive voltage pulse along the path. The control simultaneously provides a group of two or more electrodes adjacent to or identical with the pulsed drive electrodes, with a ground or stop voltage pulse.