摘要:
The semiconductor device includes an interlayer insulating film, a wiring provided in the interlayer insulating film, and a SiN film provided over the interlayer insulating film and over the wiring. The peak positions of Si—N bonds of the SiN film, which are measured by FTIR, are within the range of 845 cm−1 to 860 cm−1. This makes it possible to inhibit current leakage in a silicon nitride film, which is a barrier insulating film for preventing the diffusion of wiring metal.
摘要:
A method of producing a semiconductor device includes forming, on a first insulating film formed on a substrate, a first groove in an element-forming region to form one of a via and a wiring therein, and a first seal ring groove in a seal ring part, forming one of a via and a wiring in the first groove and a first metal layer in the first seal ring groove, and then removing the metal material in a part exposed to an outside of the first groove and the first seal ring groove, forming a second insulating film on the first insulating film, forming, on the second insulating film, a second groove, and a second seal ring groove in the seal ring part on the first seal ring groove, and forming one of a via and a wiring in the second groove and a second metal layer.
摘要:
The semiconductor device includes an interlayer insulating film, a wiring provided in the interlayer insulating film, and a SiN film provided over the interlayer insulating film and over the wiring. The peak positions of Si—N bonds of the SiN film, which are measured by FTIR, are within the range of 845 cm−1 to 860 cm−1. This makes it possible to inhibit current leakage in a silicon nitride film, which is a barrier insulating film for preventing the diffusion of wiring metal.
摘要:
A semiconductor device has a semiconductor substrate, a first interconnect made of a copper-containing metal which is formed over the semiconductor substrate, a conductive first plug formed over the first interconnect and connected to the first interconnect, a Cu silicide layer over the first interconnect in an area other than the area where the first plug is formed, a Cu silicide layer over the first plug, and a first porous MSQ film formed over an area from the side surface of the first interconnect to the side surface of the first plug and covering the side surface of the first interconnect, the upper portion of the first interconnect and the side surface of the first plug.
摘要:
A method of forming a multi-layered insulation film includes forming a first insulation layer using a first feed gas, the first insulation layer including methyl silsesquioxane (MSQ), forming a second insulation layer using a second feed gas, the second insulation layer including a polysiloxane compound having an Si—H group such that the second insulation layer is in contact with a top of the first insulation layer, and forming a third insulation layer including an inorganic material such that the third insulation layer is in contact with a top of the second insulation layer.
摘要:
A semiconductor device 200 comprises a SiCN film 202 formed on a semiconductor substrate (not shown), a first SiOC film 204 formed thereon, a SiCN film 208 formed thereon, a second SiOC film 210 formed thereon, a SiO2 film 212 and a SiCN film 214 formed thereon. The first SiOC film 204 has a barrier metal layer 216 and via 218 formed therein, and the second SiOC film 210 has a barrier metal layer 220 and wiring metal layer 222 formed therein. Carbon content of the second SiOC film 210 is adjusted larger than that of the first SiOC film 204. This makes it possible to improve adhesiveness of the insulating interlayer with other insulating layers, while keeping a low dielectric constant of the insulating interlayer.
摘要:
A method of forming a multi-layered insulation film includes forming a first insulation layer using a first feed gas, the first insulation layer including methyl silsesquioxane (MSQ), forming a second insulation layer using a second feed gas, the second insulation layer including a polysiloxane compound having an Si—H group such that the second insulation layer is in contact with a top of the first insulation layer, and forming a third insulation layer including an inorganic material such that the third insulation layer is in contact with a top of the second insulation layer.
摘要:
A semiconductor device having improved adhesiveness between films composing an interlayer insulating film is presented by providing multilayered films in the interlayer insulating films having film density distribution, in which the film density is gradually changes. A SiOC film is deposited to a thickness of 300 nm via a plasma CVD process, in which a flow rate of trimethylsilane gas is stepwise increased. In this case, the film density of the deposited SiOC film is gradually decreased by stepwise increasing the flow rate of trimethylsilane gas. Since trimethylsilane contains methyl group, trimethylsilane has more bulky molecular structure in comparison with monosilane or the like. Thus, the film density is decreased by increasing the amount of trimethylsilane in the reactant gas.
摘要:
A semiconductor device of the present invention includes a seal ring structure. The seal ring structure includes a first metal layer including a though hole, the through hole having a bottom portion filled with an insulating material, and a second metal layer formed on the first metal layer. The second metal layer has a projected portion projecting from a bottom of the second metal layer and the projected portion is inserted into a top portion of the through hole.
摘要:
In order to provide a manufacturing method of a semiconductor device which can improve the interconnection lifetime, while controlling the increase in resistance thereof, and, in addition, can raise the manufacturing stability; by applying a plasma treatment to the surface of a copper interconnection 17 with a source gas comprising a nitrogen element being used, a copper nitride layer 24 is formed, and thereafter a silicon nitride film 18 is formed. Hereat, under the copper nitride layer 24, a thin copper silicide layer 25 is formed.