Abstract:
An apparatus for inspecting a substrate surface is provided, which includes illumination optics for irradiating the substrate surface linearly with rectilinearly polarized light from an oblique direction, detection optics for acquiring images of the substrate surface, each of the images being formed by the light scattered from the light-irradiated substrate surface, and means for comparing an image selected as an inspection image from the plurality of substrate surface images that the detection optics has acquired to detect defects, and another image selected from the plural images of the substrate surface as a reference image different from the inspection image; the illumination optics being formed with polarization control means for controlling a polarizing direction of the light according to a particular scanning direction of the substrate or a direction orthogonal to the scanning direction.
Abstract:
An apparatus for inspecting a substrate surface is provided, which includes illumination optics for irradiating the substrate surface linearly with rectilinearly polarized light from an oblique direction, detection optics for acquiring images of the substrate surface, each of the images being formed by the light scattered from the light-irradiated substrate surface, and means for comparing an image selected as an inspection image from the plurality of substrate surface images that the detection optics has acquired to detect defects, and another image selected from the plural images of the substrate surface as a reference image different from the inspection image; the illumination optics being formed with polarization control means for controlling a polarizing direction of the light according to a particular scanning direction of the substrate or a direction orthogonal to the scanning direction.
Abstract:
An apparatus for inspecting a substrate surface is provided, which includes illumination optics for irradiating the substrate surface linearly with rectilinearly polarized light from an oblique direction, detection optics for acquiring images of the substrate surface, each of the images being formed by the light scattered from the light-irradiated substrate surface, and means for comparing an image selected as an inspection image from the plurality of substrate surface images that the detection optics has acquired to detect defects, and another image selected from the plural images of the substrate surface as a reference image different from the inspection image; the illumination optics being formed with polarization control means for controlling a polarizing direction of the light according to a particular scanning direction of the substrate or a direction orthogonal to the scanning direction.
Abstract:
A two-dimensional sensor is installed inclining at a predetermined angle to a moving direction of a stage on which an object to be inspected is mounted and, in synchronism with the movement of the stage, a picked up image is rearranged so that there can be obtained an image in high-density sampling with a picture-element size or less of the two-dimensional sensor with respect to a wafer. Thus, interpolation calculation during position alignment becomes unnecessary, and size calculation and classification of a defect can be performed with high accuracy.
Abstract:
A defect detecting apparatus for detecting defects on a substrate sample (wafer) having circuit patterns such as interconnections. The defect detecting apparatus is provided with stages that can be moved arbitrarily in each of the X, Y, Z, and θ directions in a state that the substrate sample is mounted thereon, an illumination optical system for illuminating the circuit patterns from one or plural directions, and a detection optical system for detecting reflection light, diffraction light, or scattered light coming from an inspection region being illuminated through almost the entire hemispherical surface having the substrate sample as the bottom surface. The NA (numerical aperture) thereby falls within a range of 0.7 to 1.0. Harmful defects or foreign substances can be detected so as to be separated from non-defects such as surface roughness of interconnections.
Abstract:
A two-dimensional sensor is installed inclining at a predetermined angle to a moving direction of a stage on which an object to be inspected is mounted and, in synchronism with the movement of the stage, a picked up image is rearranged so that there can be obtained an image in high-density sampling with a picture-element size or less of the two-dimensional sensor with respect to a wafer. Thus, interpolation calculation during position alignment becomes unnecessary, and size calculation and classification of a defect can be performed with high accuracy.
Abstract:
Disclosed is a distance measuring device using an optical comb. In order for the absolute distance to an object to be measured which has a surface with low reflection ratio or a scattering surface and is approximately 10 m apart, to be easily measured with accuracy of 0.1 mm or more using an optical and contactless method, the distance measuring device which measures the distance to the object to be measured is configured such that the distance to the object to be measured is measured by comparing the phase of the beat signal between a light source and a plurality of CW lasers which are reflected or scattered by the object with the phase of the beat signal between the light source and a plurality of CW lasers prior to being irradiated onto the object.
Abstract:
In a displacement measurement apparatus using light interference, a probe light path is spatially separated from a reference light path. Therefore, when a temperature or refractive index distribution by a fluctuation of air or the like, or a mechanical vibration is generated, an optical path difference fluctuates between both of the optical paths, and a measurement error is generated. In the solution, an optical axis of probe light is brought close to that of reference light by a distance which is not influenced by any disturbance, a sample is irradiated with the probe light, a reference surface is irradiated with the reference light, reflected light beams are allowed to interfere with each other, and a displacement of the sample is obtained from the resultant interference light to thereby prevent the measurement error from being generated by the fluctuation of the optical path difference.
Abstract:
An inspection apparatus and method includes a light source, an illuminating unit having a polarization controller and an object lens for illuminating a specimen with light emitted from the light source and passed through the polarization controller and the object lens, a detection unit having a sensor for detecting light from the specimen illuminated by the illuminating unit, a processor which processes a signal output from the sensor so as to detect a defect on the specimen, and a display which displays information output from the processor. The processor processes an image formed from the signal output from the sensor in which the image is reduced in speckle pattern.
Abstract:
The present invention relates to a defect inspection system which can perform inspection condition setting easily in a relatively short period of time, can examine the inspection condition setting even when there is no sample, and further can provide an inspection condition and a defect signal intensity to a person, who sets the inspection condition, to assist the inspection condition setting. In the defect inspection system, a defective image, which is an inspection image, and a reference image corresponding thereto and a mismatched portion of the defective image and the reference image are digitalized as a defect signal intensity and accumulated in association with the inspection condition, and the inspection conditions are changed to repeat evaluations while repeating accumulating works until the evaluation of all the inspection conditions in a set range is completed. After all the evaluations are completed, if there are a plurality of defects to be inspected, the work is repeated by times corresponding to the number of kinds of the defects and a recipe file including the accumulated conditions having the high defect signal intensity and an inspection condition item distribution as a inspection condition recipe is automatically outputted and is provided to the person who sets the inspection condition. And, appearance inspection for detecting a pattern defect or a foreign material defect on a substrate is performed.