摘要:
To obtain a SEM capable of both providing high resolution at low acceleration voltage and allowing high-speed elemental distribution measurement, a SE electron source including Zr—O as a diffusion source is shaped so that the radius r of curvature of the tip is more than 0.5 μm and less than 1 μm, and the cone angle α of a conical portion at a portion in the vicinity of the tip at a distance of 3r to 8r from the tip, is more than 5° and less than (8/r)°. Another SE electron source uses Ba—O and includes a barium diffusion supply means composed of a sintered metal and a barium diffusion source containing barium oxide.
摘要:
A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
摘要:
A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
摘要:
To obtain a SEM capable of both providing high resolution at low acceleration voltage and allowing high-speed elemental distribution measurement, a SE electron source including Zr—O as a diffusion source is shaped so that the radius r of curvature of the tip is more than 0.5 μm and less than 1 μm, and the cone angle α of a conical portion at a portion in the vicinity of the tip at a distance of 3r to 8r from the tip, is more than 5° and less than (8/r)°. Another SE electron source uses Ba—O and includes a barium diffusion supply means composed of a sintered metal and a barium diffusion source containing barium oxide.
摘要:
A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature.
摘要:
Observation using an FIB image is enabled without causing any damage to a designated region. To this end, an ion beam scanning-prohibited region is set in a sample by using an image acquired by a charged particle beam other than an ion beam, or an image prepared as external data as a peripheral image including the designated region of a sample. Thereafter, the image used to set the ion beam scanning-prohibited region is exactly superimposed on an FIB image acquired for regions except the ion beam scanning-prohibited region, thereby forming an image including the ion beam scanning-prohibited region on which ion beam scanning has not been performed.
摘要:
Provided is a technique to perform FIB milling, in spite of its sample dependency, effectively into a desired shape without influences of individual differences among operators. A charged particle beam device includes an ion beam optical system device configured to irradiate a sample with an ion beam generated at an ion source; a controller thereof; an element detector configured to detect elements constituting the sample; a controller thereof; and a central processor configured to automatically set conditions for the sample based on the element specified by the element detector.
摘要:
Provided are a device and method capable of machining a machining target such as a sample, a probe, or a sample table without requiring a high degree of device operation skill. First, a shape generation process of determining a shape of a machining target on the basis of an ion beam scanning signal and an absorption current of the machining target is performed. Next, a machining pattern positioning process of positioning a machining pattern over an image of the machining target is performed. Further, an ion beam stopping process of stopping ion beam irradiation is performed from a result of comparison between the image of the machining target and the machining pattern while the machining target is machined through the ion beam irradiation.
摘要:
Provided is a technique capable of removing a damaged layer of a sample piece generated through an FIB fabrication sufficiently but at the minimum. A charged particle beam device includes a first element ion beam optical system unit (110) which performs a first FIB fabrication to form a sample piece from a sample, a second element ion beam optical system unit (120) which performs a second FIB fabrication to remove a damaged layer formed on a surface of the sample piece, and a first element detector (140) which detects an first element existing in the damaged layer. A termination of the second FIB fabrication is determined if an amount of the first element existing in the damaged layer becomes smaller than a predefined threshold value.
摘要:
An ion beam processing apparatus includes an ion beam irradiation optical system that irradiate a rectangular ion beam to a sample held on a first sample stage, an electron beam irradiation optical system that irradiates an electron beam to the sample, and a second sample stage on which a test piece, extracted from the sample by a probe, is mounted. An angle of irradiation of the ion beam can be tilted by rotating the second sample stage about a tilting axis. A controller controls the width of skew of an intensity profile representing an edge of the rectangular ion beam in a direction perpendicular to a first direction in which the tilting axis of the second sample stage is projected on the second sample stage surface so that the width will be smaller than the width of skew of an intensity profile representing another edge of the ion beam in a direction parallel to the first direction.