Abstract:
Embodiments relate to a field-effect transistor (FET) replacement gate apparatus. The apparatus includes one or more of a substrate and insulator including a base and side walls defining a trench. A high-dielectric constant (high-k) layer is formed on the base and side walls of the trench. The high-k layer has an upper surface conforming to a shape of the trench. A first layer is formed on the high-k layer and conforms to the shape of the trench. The first layer includes an aluminum-free metal nitride. A second layer is formed on the first layer and conforms to the shape of the trench. The second layer includes aluminum and at least one other metal. A third layer is formed on the second layer and conforms to the shape of the trench. The third layer includes aluminum-free metal nitride.
Abstract:
Embodiments relate to a field-effect transistor (FET) replacement gate apparatus. The apparatus includes a channel structure including a base and side walls defining a trench. A high-dielectric constant (high-k) layer is formed on the base and side walls of the trench. The high-k layer has an upper surface conforming to a shape of the trench. A first layer is formed on the high-k layer and conforms to the shape of the trench. The first layer includes an aluminum-free metal nitride. A second layer is formed on the first layer and conforms to the shape of the trench. The second layer includes aluminum and at least one other metal. A third layer is formed on the second layer and conforms to the shape of the trench. The third layer includes aluminum-free metal nitride.
Abstract:
Embodiments relate to a field-effect transistor (FET) replacement gate apparatus. The apparatus includes a channel structure including a base and side walls defining a trench. A high-dielectric constant (high-k) layer is formed on the base and side walls of the trench. The high-k layer has an upper surface conforming to a shape of the trench. A first layer is formed on the high-k layer and conforms to the shape of the trench. The first layer includes an aluminum-free metal nitride. A second layer is formed on the first layer and conforms to the shape of the trench. The second layer includes aluminum and at least one other metal. A third layer is formed on the second layer and conforms to the shape of the trench. The third layer includes aluminum-free metal nitride.
Abstract:
A field effect transistor device includes a first gate stack portion including a dielectric layer disposed on a substrate, a first TiN layer disposed on the dielectric layer, a metallic layer disposed on the dielectric layer, and a second TiN layer disposed on the metallic layer, a first source region disposed adjacent to the first gate stack portion, and a first drain region disposed adjacent to the first gate stack portion.
Abstract:
A method of simultaneously fabricating n-type and p type field effect transistors can include forming a first replacement gate having a first gate metal layer adjacent a gate dielectric layer in a first opening in a dielectric region overlying a first active semiconductor region. A second replacement gate including a second gate metal layer can be formed adjacent a gate dielectric layer in a second opening in a dielectric region overlying a second active semiconductor region. At least portions of the first and second gate metal layers can be stacked in a direction of their thicknesses and separated from each other by at least a barrier metal layer. The NFET resulting from the method can include the first active semiconductor region, the source/drain regions therein and the first replacement gate, and the PFET resulting from the method can include the second active semiconductor region, source/drain regions therein and the second replacement gate.
Abstract:
A method of simultaneously fabricating n-type and p type field effect transistors can include forming a first replacement gate having a first gate metal layer adjacent a gate dielectric layer in a first opening in a dielectric region overlying a first active semiconductor region. A second replacement gate including a second gate metal layer can be formed adjacent a gate dielectric layer in a second opening in a dielectric region overlying a second active semiconductor region. At least portions of the first and second gate metal layers can be stacked in a direction of their thicknesses and separated from each other by at least a barrier metal layer. The NFET resulting from the method can include the first active semiconductor region, the source/drain regions therein and the first replacement gate, and the PFET resulting from the method can include the second active semiconductor region, source/drain regions therein and the second replacement gate.
Abstract:
Replacement gate work function material stacks are provided, which provides a work function about the energy level of the conduction band of silicon. After removal of a disposable gate stack, a gate dielectric layer is formed in a gate cavity. A metallic compound layer including a metal and a non-metal element is deposited directly on the gate dielectric layer. At least one barrier layer and a conductive material layer is deposited and planarized to fill the gate cavity. The metallic compound layer includes a material having a work function about 4.4 eV or less, and can include a material selected from tantalum carbide and a hafnium-silicon alloy. Thus, the metallic compound layer can provide a work function that enhances the performance of an n-type field effect transistor employing a silicon channel.
Abstract:
A semiconductor device includes: a semiconductor substrate; a PFET formed on the substrate, the PFET includes a SiGe layer disposed on the substrate, a high-K dielectric layer disposed on the SiGe layer, a first metallic layer disposed on the high-k dielectric layer, a first intermediate layer disposed on the first metallic layer, a second metallic layer disposed on the first intermediate layer, a second intermediate layer disposed on the second metallic layer, and a third metallic layer disposed on the second intermediate layer; an NFET formed on the substrate, the NFET includes the high-k dielectric layer, the high-k dielectric layer being disposed on the substrate, the second intermediate layer, the second intermediate layer being disposed on the high-k dielectric layer, and the third metallic layer, the third metallic layer being disposed on the second intermediate layer. Alternatively, the first metallic layer is omitted. A method to fabricate the device includes providing SiO2 and alpha-silicon layers or a dBARC layer.
Abstract:
A transistor includes a semiconductor layer and a gate structure located on the semiconductor layer. The gate structure includes a first dielectric layer. The first dielectric layer includes a doped region and an undoped region below the doped region. A second dielectric layer is located on the first dielectric layer, and a first metal nitride layer is located on the second dielectric layer. The doped region of the first dielectric layer comprises dopants from the second dielectric layer. Source and drain regions in the semiconductor layer are located on opposite sides of the gate structure.
Abstract:
A semiconductor structure is provided. The structure includes a semiconductor substrate of a semiconductor material and a gate dielectric having a high dielectric constant dielectric layer with a dielectric constant greater than silicon. The gate dielectric is located on the semiconductor substrate. A gate electrode abuts the gate dielectric. The gate electrodes includes a lower metal layer abutting the gate dielectric, a scavenging metal layer abutting the lower metal layer, an upper metal layer abutting the scavenging metal layer, and a silicon layer abutting the upper metal layer. The scavenging metal layer reduces an oxidized layer at an interface between the upper metal layer and the silicon layer responsive to annealing.