Abstract:
A method includes performing a place and route operation using an electronic design automation tool to generate a preliminary layout for a photomask to be used to form a circuit pattern of a semiconductor device. The place and route operation is constrained by a plurality of single patterning spacer technique (SPST) routing rules. Dummy conductive fill patterns are emulated within the EDA tool using an RC extraction tool to predict locations and sizes of dummy conductive fill patterns to be added to the preliminary layout of the photomask. An RC timing analysis of the circuit pattern is performed within the EDA tool, based on the preliminary layout and the emulated dummy conductive fill patterns.
Abstract:
A method comprises: selecting a circuit pattern or network of circuit patterns in a layout of an integrated circuit (IC) to be fabricating using double patterning technology (DPT). Circuit patterns near the selected circuit pattern or network are grouped into one or more groups. For each group, a respective expected resistance-capacitance (RC) extraction error cost is calculated, which is associated with a mask alignment error, for two different sets of mask assignments. The circuit patterns in the one or more groups are assigned to be patterned by respective photomasks, so as to minimize a total of the expected RC extraction error costs.
Abstract:
The present disclosure relates to methods and apparatuses for generating a through-silicon via (TSV) model for RC extraction that accurately models an interposer substrate comprising one or more TSVs. In some embodiments, a method is performed by generating an interposer wafer model having a sub-circuit that models a TSV. The sub-circuit can compensate for limitations in resistive and capacitive extraction of traditional TSV models performed by EDA tools. In some embodiments, the sub-circuit is coupled to a floating common node of the model. The floating common node enables the interposer wafer model to take into consideration capacitive coupling within the interposer. The improved interposer wafer model enables accurate RC extraction of an interposer with one or more TSVs, thereby providing for an interposer wafer model that is consistent between GDS and APR flows.
Abstract:
The present disclosure relates to methods and apparatuses for generating a through-silicon via (TSV) model for RC extraction that accurately models an interposer substrate comprising one or more TSVs. In some embodiments, a method is performed by generating an interposer wafer model having a sub-circuit that models a TSV. The sub-circuit can compensate for limitations in resistive and capacitive extraction of traditional TSV models performed by EDA tools. In some embodiments, the sub-circuit is coupled to a floating common node of the model. The floating common node enables the interposer wafer model to take into consideration capacitive coupling within the interposer. The improved interposer wafer model enables accurate RC extraction of an interposer with one or more TSVs, thereby providing for an interposer wafer model that is consistent between GDS and APR flows.
Abstract:
A method includes receiving data representing a layout of a DPT-layer of an integrated circuit generated by a place and route tool. The layout includes a plurality of polygons to be formed in the DPT-layer by a multi-patterning process. First and second ones of the plurality of polygons to be formed using first and second photomasks, respectively are identified. Any intervening polygons along a first path connecting the first polygon to the second polygon, and separator regions between adjacent polygons along the first path are identified. The separator regions have sizes less than a minimum threshold distance between polygons formed on the first photomask. The separator regions are counted. A multi-patterning conflict is identified, if the count of separator regions is even, prior to assigning all remaining ones of the plurality of polygons to the first or second masks.