Abstract:
In an embodiment, a method includes: forming a first opening in a semiconductor substrate, in a plan view the first opening having a ring shape; forming a dielectric guard ring in the first opening; forming an active device along a first surface of the semiconductor substrate; forming first metallization layers over the active device; forming a second opening through the semiconductor substrate, the second opening adjacent to the ring shape of the dielectric guard ring; forming a conductive through via in the second opening; and forming second metallization layers over the first metallization layers.
Abstract:
A FinFET device includes a dielectric layer formed over a semiconductor substrate and having an upper dielectric layer surface. A fin of semiconductor material extends upwards from the substrate through an opening in the dielectric layer. A base portion of the fin, which is recessed below the upper dielectric layer surface, includes a base channel region that separates first and second base source/drain regions. An upper channel region extends upwards from the base channel region and terminates in an upper fin surface disposed above the upper dielectric layer surface. A gate electrode straddles the upper channel region and is separated from the upper channel region by a gate dielectric. First and second epitaxial source/drain regions meet the first and second base source/drain regions, respectively, at first and second interfaces, respectively. The first and second interfaces are recessed in the opening and arranged below the upper dielectric layer surface.
Abstract:
A FinFET device includes a dielectric layer formed over a semiconductor substrate and having an upper dielectric layer surface. A fin of semiconductor material extends upwards from the substrate through an opening in the dielectric layer. A base portion of the fin, which is recessed below the upper dielectric layer surface, includes a base channel region that separates first and second base source/drain regions. An upper channel region extends upwards from the base channel region and terminates in an upper fin surface disposed above the upper dielectric layer surface. A gate electrode straddles the upper channel region and is separated from the upper channel region by a gate dielectric. First and second epitaxial source/drain regions meet the first and second base source/drain regions, respectively, at first and second interfaces, respectively. The first and second interfaces are recessed in the opening and arranged below the upper dielectric layer surface.
Abstract:
A FinFET device includes a dielectric layer formed over a semiconductor substrate and having an upper dielectric layer surface. A fin of semiconductor material extends upwards from the substrate through an opening in the dielectric layer. A base portion of the fin, which is recessed below the upper dielectric layer surface, includes a base channel region that separates first and second base source/drain regions. An upper channel region extends upwards from the base channel region and terminates in an upper fin surface disposed above the upper dielectric layer surface. A gate electrode straddles the upper channel region and is separated from the upper channel region by a gate dielectric. First and second epitaxial source/drain regions meet the first and second base source/drain regions, respectively, at first and second interfaces, respectively. The first and second interfaces are recessed in the opening and arranged below the upper dielectric layer surface.
Abstract:
A FinFET device includes a dielectric layer formed over a semiconductor substrate and having an upper dielectric layer surface. A fin of semiconductor material extends upwards from the substrate through an opening in the dielectric layer. A base portion of the fin, which is recessed below the upper dielectric layer surface, includes a base channel region that separates first and second base source/drain regions. An upper channel region extends upwards from the base channel region and terminates in an upper fin surface disposed above the upper dielectric layer surface. A gate electrode straddles the upper channel region and is separated from the upper channel region by a gate dielectric. First and second epitaxial source/drain regions meet the first and second base source/drain regions, respectively, at first and second interfaces, respectively. The first and second interfaces are recessed in the opening and arranged below the upper dielectric layer surface.