Abstract:
The present invention relates to a method for depositing a protection film of a light-emitting element, the method comprising the steps of: depositing a first protection layer on a light-emitting element of a substrate by means of the atomic layer deposition method; and depositing at least one additional protection layer on the first protection layer by means of the plasma-enhanced chemical vapor deposition method.
Abstract:
The present invention relates to a method of depositing a protection film for a light-emitting element, the method comprising the steps of: depositing a first inorganic protection layer on a light-emitting element on a substrate; and depositing a second inorganic protection layer, having comparatively smaller internal stress than the first inorganic protection layer, on the first inorganic protection layer.
Abstract:
The present invention relates to a passivation film deposition method for a light-emitting diode, comprising the steps of: depositing, on an upper part of a light-emitting diode of a substrate, a first passivation film having a silicon nitride (SiNx); and depositing, on an upper part of the first passivation film, a second passivation film having a silicon oxide (SiOx), wherein the ratio of the thickness of the first passivation film to the thickness of the second passivation film is 0.2-0.4:1.
Abstract:
The present invention relates to a method of depositing a protection film for a light-emitting element, the method comprising the steps of: depositing a first inorganic protection layer on a light-emitting element on a substrate; and depositing a second inorganic protection layer, having comparatively smaller internal stress than the first inorganic protection layer, on the first inorganic protection layer.
Abstract:
A thin film deposition apparatus is provided. The thin film deposition apparatus prevents powders from being generated by a gas supply unit for supplying process gas when a thin film is deposited by atomic layer deposition (ALD).
Abstract:
Provided is a solar cell module comprising a crystalline silicon wafer, at least one amorphous silicon layer provided on at least one of a top and bottom of the crystalline silicon wafer, a transparent conductive film provided on a surface of the at least one amorphous silicon layer, electrodes provided on a surface of the transparent conductive film and a division unit to divide the transparent conductive film into a current-carrying region and a non-current-carrying region, wherein the current-carrying region is electrically connected to the electrodes and the non-current-carrying region is electrically disconnected from the electrodes.
Abstract:
The present invention relates to a method for depositing a protection film of a light-emitting element, the method comprising the steps of: depositing a first protection layer on a light-emitting element of a substrate by means of the atomic layer deposition method; and depositing at least one additional protection layer on the first protection layer by means of the plasma-enhanced chemical vapor deposition method.
Abstract:
The present invention relates to a passivation film deposition method for a light-emitting diode, comprising the steps of: depositing, on an upper part of a light-emitting diode of a substrate, a first passivation film having a silicon nitride (SiNx); and depositing, on an upper part of the first passivation film, a second passivation film having a silicon oxide (SiOx), wherein the ratio of the thickness of the first passivation film to the thickness of the second passivation film is 0.2-0.4:1.
Abstract:
Provided is a solar cell module comprising a crystalline silicon wafer, at least one amorphous silicon layer provided on at least one of a top and bottom of the crystalline silicon wafer, a transparent conductive film provided on a surface of the at least one amorphous silicon layer, electrodes provided on a surface of the transparent conductive film and a division unit to divide the transparent conductive film into a current-carrying region and a non-current-carrying region, wherein the current-carrying region is electrically connected to the electrodes and the non-current-carrying region is electrically disconnected from the electrodes.