Abstract:
The invention provides a method of treatment joint and disk disease comprising administering to the subject in need thereof a novel composition comprising a substantially purified plurality of cells enhanced with at least one bioactive factor capable of causing at least a portion of the plurality of cells to express an increased amount of at least one chondrogenic marker.
Abstract:
The invention provides fusion polypeptides comprising protein transduction domains and osteoinductive polypeptides, as well as methods of using such polypeptides to induce osteogenesis and to promote proteoglycan synthesis. The invention also provides osteoinductive peptides which have demonstrated the ability to induce bone formation in vivo.
Abstract:
An implantable sensor for detecting changes in tissue density is disclosed. The implantable sensor includes a transducer adapted for detecting indicators of tissue density. The implantable sensor includes memory for storing data corresponding to the tissue density indicators detected by the sensor. A telemetry circuit is configured for transmitting the tissue density data outside of the body.
Abstract:
The invention provides fusion polypeptides comprising protein transduction domains and osteoinductive polypeptides, as well as methods of using such polypeptides to induce osteogenesis and to promote proteoglycan synthesis. The invention also provides osteoinductive peptides which have demonstrated the ability to induce bone formation in vivo.
Abstract:
Described are malleable medical compositions such as pastes or putties that include solids combined with a liquid carrier. The solids include particulate collagen and particulate demineralized bone matrix. The liquid carrier includes an aqueous medium comprising a polysaccharide. Also described are methods for making and using such medical compositions.
Abstract:
The invention provides a method for alleviating discogenic pain by administering a therapeutic agent that disrupts neuronal and/or vascular elements in the disc, which is typically a degenerated disc. Disruption of neuronal elements in the disk includes destroying nerve endings without substantially affecting the central body of the nerve, suppressing activation of the nerve endings, and inhibiting the growth of nerve endings into the disk. Disruption of vascular elements includes causing the vascular extensions to retract from the disk, or suppressing the formation of such extensions. The therapeutic agent may be administered locally via an interbody pump, a bolus or a depot, or may be administered systemically.
Abstract:
A flexible tissue sheath for treating a lacerated fibrous connective tissue is disclosed and can include a hollow body that can define an interior surface and an exterior surface. At least one tissue engagement structure can extend from the hollow body. The tissue engagement structure can engage an end of the lacerated fibrous connective tissue and substantially prevent the end of the lacerated fibrous connective tissue from withdrawing from the hollow body.
Abstract:
Described are medical implant devices that include particulate collagen and particulate demineralized bone matrix. These and potentially other materials are held together in a three-dimensionally stable structure such as a porous, resilient sheet, by an ionically-crosslinked polysaccharide gel. Also described are methods for making and using such medical devices.
Abstract:
Described are novel methods for delivering a medical agent to a plurality of locations within a patient tissue volume such as the interior space of a spinal disc, and also for removing material therefrom during medical agent delivery to enhance the delivery. Also described are medical delivery devices such as needle assemblies configured to facilitate the regional delivery of medical agents to patient tissue.
Abstract:
A composition comprising a collagen protein and demineralized bone matrix is described wherein the composition is chemically cross-linked with a carbodiimide such as N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC). The crosslinking reaction can be conducted in the presence of N-hydroxysuccinimide (NHS). The collagen can be in a porous matrix or scaffolding. The DBM can be in the form of particles dispersed in the collagen. A method of making the composition is also described wherein a collagen slurry is cast into the desired shape, freeze dried to form a porous scaffolding and infitrated with a solution comprising the cross-linking agent. The composition can be used as an implant for tissue (e.g., soft tissue or bone) engineering.