Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
Abstract:
A fabrication method of a semiconductor package is provided, which includes the steps of: providing a carrier having an adhesive layer and at least a semiconductor element having a protection layer; disposing the semiconductor element on the adhesive layer of the carrier through the protection layer; forming an encapsulant on the adhesive layer of the carrier for encapsulating the semiconductor element; removing the carrier and the adhesive layer to expose the protection layer from the encapsulant; and removing the protection layer to expose the semiconductor element from the encapsulant. Since the semiconductor element is protected by the protection layer against damage during the process of removing the adhesive layer, the product yield is improved.
Abstract:
A fabrication method of a semiconductor package includes the steps of: providing a carrier having a concave portion and a releasing layer formed on a surface thereof; disposing a chip on the releasing layer in the concave portion; forming an encapsulant on the chip and the releasing layer; removing the releasing layer and the carrier; and forming a circuit structure on the encapsulant and the chip. The design of the concave portion facilitates alignment of the chip to prevent it from displacement, thereby improving the product reliability. A semiconductor package fabricated by the fabrication method is also provided.
Abstract:
A semiconductor package is provided, including: an insulating layer; a semiconductor element embedded in the insulating layer; an adhesive body embedded in the insulating layer, wherein a portion of the semiconductor element is embedded in the adhesive body; a patterned metal layer embedded in the adhesive body and electrically connected to the semiconductor element; and a redistribution structure formed on the insulating layer and electrically connected to the patterned metal layer. By embedding the semiconductor element in the adhesive body, the present invention can securely fix the semiconductor element at a predetermined position without any positional deviation, thereby improving the product yield.
Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a semiconductor element on a carrier; forming an encapsulant on the carrier to encapsulant the semiconductor element; forming at least one through hole penetrating the encapsulant; forming a hollow conductive through hole in the through hole and, at the same time, forming a circuit layer on an active surface of the semiconductor element and the encapsulant; forming an insulating layer on the circuit layer; and removing the carrier. By forming the conductive through hole and the circuit layer simultaneously, the invention eliminates the need to form a dielectric layer before forming the circuit layer and dispenses with the conventional chemical mechanical polishing (CMP) process, thus greatly improving the fabrication efficiency.
Abstract:
A method for fabricating a semiconductor package is disclosed, which includes the steps of: providing a carrier having a release layer and an adhesive layer sequentially formed thereon; disposing a plurality of semiconductor chips on the adhesive layer; forming an encapsulant on the adhesive layer for encapsulating the semiconductor chips; disposing a substrate on the encapsulant; exposing the release layer to light through the carrier so as to remove the release layer and the carrier; and then removing the adhesive layer, thereby effectively preventing the semiconductor chips from being exposed to light so as to avoid any photo damage to the semiconductor chips.
Abstract:
A fabrication method of a semiconductor package includes the steps of: forming a release layer on a carrier having concave portions; disposing chips on the release layer in the concave portions of the carrier; forming an encapsulant on the chips and the release layer; forming a bonding layer on the encapsulant; removing the release layer and the carrier so as to expose the active surfaces of the chips; and forming a circuit structure on the encapsulant and the chips. Since the release layer is only slightly adhesive to the chips and the encapsulant, the present invention avoids warpage of the overall structure during a thermal cycle caused by incompatible CTEs.
Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
Abstract:
A fabrication method of a semiconductor package includes the steps of: providing a carrier having a concave portion and a releasing layer formed on a surface thereof; disposing a chip on the releasing layer in the concave portion; forming an encapsulant on the chip and the releasing layer; removing the releasing layer and the carrier; and forming a circuit structure on the encapsulant and the chip. The design of the concave portion facilitates alignment of the chip to prevent it from displacement, thereby improving the product reliability. A semiconductor package fabricated by the fabrication method is also provided.