Abstract:
An eco-friendly fire-retardant polymer composition, a molded article made from the composition, and a method of manufacturing the molded article. The composition includes: a thermoplastic resin containing polycarbonate; a bio-based resin containing polytrimethylene terephthalate extracted from a biomaterial; and an impact modifier containing a core-shell type elastomer.
Abstract:
Disclosed are a conductive resin composition and a display device using the same. The display device includes a display panel, and a frame having conductivity, in which the display panel is mounted, wherein the frame is formed of a conductive resin composition and the conductive resin composition includes a resin including a polyester copolymer resin, and carbon nanotube (CNT). The conductive resin composition prevents static discharge due to electrical conductivity and improves production efficiency though simplification of the overall manufacturing process. In addition, the conductive resin composition is applicable to thin film molding due to improved moldability and self-extinguishes flames due to flame retardancy.
Abstract:
Disclosed are a conductive resin composition and a display device using the same. The display device includes a display panel, and a frame having conductivity, in which the display panel is mounted, wherein the frame is formed of a conductive resin composition and the conductive resin composition includes a resin including a polyester copolymer resin, and carbon nanotube (CNT). The conductive resin composition prevents static discharge due to electrical conductivity and improves production efficiency though simplification of the overall manufacturing process. In addition, the conductive resin composition is applicable to thin film molding due to improved moldability and self-extinguishes flames due to flame retardancy.
Abstract:
Provided are: a polymer composition, as an eco-friendly material, comprising a post consumer material (PCM) resin and a bio-based resin; a molded article; and a method for manufacturing the same. The polymer composition according to an embodiment comprises a thermoplastic resin containing polycarbonate, a post consumer material (PCM) resin, a bio-based resin, and a core-shell type elastomer.
Abstract:
Disclosed are a conductive resin composition and a display device using the same. The display device includes a display panel, and a frame having conductivity, in which the display panel is mounted, wherein the frame is formed of a conductive resin composition and the conductive resin composition includes a resin including a polyester copolymer resin, and carbon nanotube (CNT). The conductive resin composition prevents static discharge due to electrical conductivity and improves production efficiency though simplification of the overall manufacturing process. In addition, the conductive resin composition is applicable to thin film molding due to improved moldability and self-extinguishes flames due to flame retardancy.
Abstract:
A composite including a polymer matrix; an inorganic moisture absorber; a ceramic filler, graphite, or a combination thereof; and a tracking resistance polymer, wherein the tracking resistance polymer includes an average bond energy between an atom forming a main chain and another atom covalently bonded to the atom that forms the main chain of about 350 kJ/mol to about 500 kJ/mol; a carbonaceous residue yield after pyrolysis of less than or equal to about 5 weight percent, based on the amount of the tracking resistance polymer before pyrolysis; or a combination thereof.
Abstract:
A battery case including a container configured to house an electrode assembly, wherein the container includes a bottom wall and a plurality of side walls, the bottom wall and the side walls integrated to define a space for housing the electrode assembly and an open side opposed to the bottom wall, the container includes a composite including a polymer matrix, an inorganic moisture absorbent dispersed in the base polymer, and a compatibilizer to promote compatibility between the polymer matrix and the inorganic moisture absorbent, the compatibilizer is included in an amount of less than about 3 wt % based on a total weight of the composite, at least one of the bottom wall and the side walls at a thickness of 1 millimeter has a water vapor transmission rate of less than about 0.07 g/m2/day, when measured at 38° C. and a relative humidity of 100%.
Abstract:
A battery case including: a container configured to house an electrode assembly, wherein the container includes a bottom wall and a plurality of side walls, the bottom wall and the plurality of side walls are integrated to define a space for housing the electrode assembly and to provide a top opening opposite the bottom wall, the container includes a polymeric composition including a polymer and an inorganic moisture absorbent dispersed in the polymer, and the battery case has a water vapor transmission rate (WVTR) of less than about 0.05 grams per square meter per day, when measured at 38° C. and a relative humidity of 100% according to ISO 15106 or ASTM F1249.