Abstract:
A graphene device includes: a semiconductor substrate having a first region and a second region; a graphene layer on the first region, but not on the second region of the semiconductor substrate; a first electrode on a first portion of the graphene layer; a second electrode on a second portion of the graphene layer; an insulating layer between the graphene layer and the second electrode; and a third electrode on the second region of the semiconductor substrate. The semiconductor substrate has a tunable Schottky barrier formed by junction of the first electrode, the graphene layer, and the semiconductor substrate.
Abstract:
According to example embodiments, an electronic device includes: a semiconductor layer; a graphene directly contacting a desired (and/or alternatively predetermined) area of the semiconductor layer; and a metal layer on the graphene. The desired (and/or alternatively predetermined) area of the semiconductor layer include one of: a constant doping density, a doping density that is equal to or less than 1019 cm−3, and a depletion width of less than or equal to 3 nm.
Abstract:
According to example embodiments, a field effect transistor includes a graphene channel layer on a substrate. The graphene channel layer defines a slit. A source electrode and a drain electrode are spaced apart from each other and arranged to apply voltages to the graphene channel layer. A gate insulation layer is between the graphene channel layer and a gate electrode.
Abstract:
A switching device includes a semiconductor layer, a graphene layer, a gate insulation layer, and a gate formed in a three-dimensional stacking structure between a first electrode and a second electrode formed on a substrate.
Abstract:
A thin film structure includes a metal seed layer, and a method of forming an oxide thin film on a conductive substrate by using the metal seed layer is disclosed. The thin film structure includes a transparent conductive substrate, a metal seed layer that is deposited on the transparent conductive substrate, and a metal oxide layer that is deposited on the metal seed layer.
Abstract:
Inverters including two-dimensional (2D) material, methods of manufacturing the same, and logic devices including the inverters. An inverter may include a first transistor and a second transistor that are connected to each other, and the first and second transistor layers may include 2D materials. The first transistor may include a first graphene layer and a first 2D semiconductor layer contacting the first graphene layer, and the second transistor may include a second graphene layer and a second 2D semiconductor layer contacting the second graphene layer. The first 2D semiconductor layer may be a p-type semiconductor, and the second 2D semiconductor layer may be an n-type semiconductor. The first 2D semiconductor layer may be arranged at a lateral side of the second 2D semiconductor layer.
Abstract:
Example embodiments relate to a stacking structure having a material layer formed on a graphene layer, and a method of forming the material layer on the graphene layer. In the stacking structure, when the material layer is formed on the graphene layer by using an ALD method, an intermediate layer as a seed layer may be formed on the graphene layer by using a linear type precursor.
Abstract:
Disclosed are memory devices including a two-dimensional (2D) material, methods of manufacturing the same, and methods of operating the same. A memory device may include a transistor, which includes graphene and 2D semiconductor contacting the graphene, and a capacitor connected to the transistor. The memory device may include a first electrode, a first insulation layer, a second electrode, a semiconductor layer, a third electrode, a second insulation layer, and a fourth electrode which are sequentially arranged. The second electrode may include the graphene, and the semiconductor layer may include the 2D semiconductor. Alternatively, the memory device may include first and second electrode elements, a graphene layer between the first and second electrode elements, a 2D semiconductor layer between the graphene layer and the first electrode element, and a dielectric layer between the graphene layer and the second electrode.
Abstract:
A graphene device including separated junction contacts and a method of manufacturing the same are disclosed. The graphene device is a field effect transistor (FET) in which graphene is used as a channel. A source electrode and a drain electrode do not directly contact the graphene channel, and junction contacts formed by doping semiconductor are separately disposed between the graphene channel and the source electrode and between the graphene channel and the drain electrode. Therefore, in an off state where a voltage is not applied to a gate electrode, due to a barrier between the graphene channel and the junction contacts, carriers may not move. As a result, the graphene device may have low current in the off state.
Abstract:
A graphene device and an electronic apparatus including the same are provided. According to example embodiments, the graphene device includes a transistor including a source, a gate, and a drain, an active layer through which carriers move, and a graphene layer between the gate and the active layer. The graphene layer may be configured to function both as an electrode of the active layer and a channel layer of the transistor.