Abstract:
A method of manufacturing a semiconductor device includes forming a first fin-type pattern and a second fin-type pattern which are separated by a first trench between facing ends thereof, forming a first insulating layer filling the first trench, removing a portion of the first insulating layer to form a second trench on the first insulating layer, and forming a third trench by enlarging a width of the second trench.
Abstract:
A transmitter and a receiver of a multiple input multiple output (MIMO) communication system may use two codebooks to share channel information. When the transmitter uses eight transmit antennas, two codebooks may be defined. When the receiver generates two precoding matrix indicators from two codebooks, a combination of the two precoding matrix indicators may indicate a single precoding matrix. Precoding matrix candidates may also be defined.
Abstract:
A method for manufacturing a fin structure for a vertical field effect transistor (VFET) includes: forming on a substrate mandrels having at least one first gap therebetween; forming first spacers on side surfaces of the mandrels such that at least one second gap, smaller than the first gap, is formed between the first spacers; forming a second spacer on side surfaces of the first spacers; removing the mandrels and the first spacers to leave the second spacer on the side surfaces of the first spacers; removing the second spacer, on the side surfaces of the first spacers, at a predetermined portion so that the remaining second spacer has a same two-dimensional (2D) shape as the fin structure; and removing a portion of the substrate, except below the remaining second spacer, and the remaining second spacer so that the substrate below the remaining second spacer forms the fin structure.
Abstract:
A method of manufacturing a semiconductor device includes forming a first fin-type pattern and a second fin-type pattern which are separated by a first trench between facing ends thereof, forming a first insulating layer filling the first trench, removing a portion of the first insulating layer to form a second trench on the first insulating layer, and forming a third trench by enlarging a width of the second trench.
Abstract:
Provided is a feedback method and apparatus in a multiple-input multiple-output (MIMO) communication system. A terminal may determine a preferred pre-coding matrix for a neighboring terminal, based on a reference rank determined by a base station and a preferred pre-coding matrix of the terminal. The terminal may calculate a channel quality indicator (CQI) based on the preferred precoding matrix for the neighboring terminal, and may feed the CQI back to the base station.
Abstract:
The present disclosure relates to a terminal signal transmission timing randomisation method and device in a wireless communication system, and the terminal signal transmission method in a wireless communication system of the present disclosure comprises the steps of: receiving, from a base station, setting information for randomising transmission timing with respect to a signal transmitted by a terminal; determining the transmission timing for the signal in accordance with the setting information; and transmitting the signal to the base station in accordance with the determined transmission timing.
Abstract:
A multiple input multiple output (MIMO) communication method using a codebook is provided. The MIMO communication method may use one or more codebooks and the codebooks may change according to a transmission rank, a channel state of a user terminal, and/or a number of feedback bits. The one or more codebooks may be adaptively updated according to a time correlation coefficient of a channel.
Abstract:
The present invention relates to a method and device for transmitting and receiving CSI (Channel State Information). A CSI transmission method at a CoMP (Coordinated Multi-Point) device includes steps of receiving a CSI-RS (Reference Signal) from a plurality of transmission points, acquiring an optimal phase difference value causing an optimal channel quality between the plurality of transmission points, based on the CSI-RS, acquiring a CQI (Channel Quality Indicator), based on the optimal phase difference value, and transmitting the CSI including the CQI. According to an embodiment of the present invention, efficient CSI transmission/reception method and device can be provided in a CoMP system.
Abstract:
Provided is a feedback method and apparatus in a multiple-input multiple-output (MIMO) communication system. A terminal may determine a preferred pre-coding matrix for a neighboring terminal, based on a reference rank determined by a base station and a preferred pre-coding matrix of the terminal. The terminal may calculate a channel quality indicator (CQI) based on the preferred precoding matrix for the neighboring terminal, and may feed the CQI back to the base station.
Abstract:
The present invention relates to a method and device for transmitting and receiving CSI (Channel State Information). A CSI transmission method at a CoMP (Coordinated Multi-Point) device includes steps of receiving a CSI-RS (Reference Signal) from a plurality of transmission points, acquiring an optimal phase difference value causing an optimal channel quality between the plurality of transmission points, based on the CSI-RS, acquiring a CQI (Channel Quality Indicator), based on the optimal phase difference value, and transmitting the CSI including the CQI. According to an embodiment of the present invention, efficient CSI transmission/reception method and device can be provided in a CoMP system.