Abstract:
A display device according to an embodiment of the inventive concept includes a data driving unit, a gate driving unit, a signal control unit for controlling driving of the data driving unit and the gate driving unit, and a display panel. The data driving unit generates an internal clock signal for outputting data voltages corresponding to image data, and the display panel displays an image corresponding to the data voltages in response to a gate driving signal outputted from the gate driving unit. The data driving unit includes a filtering unit for converting a first frequency control signal received from the signal control unit so as to generate a second frequency control signal, and a clock training unit for training a clock signal received from the signal control unit so as to generate the internal clock signal in response to the second frequency control signal.
Abstract:
A display device includes a display panel including first and second panel pads electrically connected to each other, a connection board including first and second connection board pads connected to the first and second panel pads, respectively, an output pad, and a driving circuit. The driving circuit includes a pull-up resistor connected between a first voltage terminal and a first node, and a comparator configured to compare a voltage at the first node with a reference voltage and to output a contact test signal corresponding to a comparison result to the output pad. The first connection board pad is electrically connected to the first node, and the second connection board pad is connected to a second voltage terminal.
Abstract:
A backlight unit includes a power converter configured to generate a light source driving voltage in response to a voltage control signal, a plurality of light emitting diode strings, where each of the light emitting diode strings receives the light source driving voltage through a first terminal thereof, a plurality of transistors corresponding to the light emitting diode strings, where each of the transistors includes: a first electrode connected to a second terminal of a corresponding light emitting diode string thereof; a second electrode; and a control electrode, and a controller connected to the control electrode and the second electrode, where the controller outputs a plurality of current control signals to control electrodes of the transistors and generate the voltage control signal, where the controller generates an over-current detection signal when any one of the current control signals has a pulse width greater than a predetermined reference width.
Abstract:
A display device including: a display panel including a plurality of pixels; and a data driver configured to arrange the display panel into a plurality of pixel blocks, and to output a data voltage with different slew rates to the plurality of pixel blocks, wherein the slew rates are based on distances of the plurality of pixel blocks from the data driver, wherein a boundary between adjacent pixel blocks with different slew rates is changeable.
Abstract:
A data driver includes a first latch, a second latch, a digital-to-analog converter, and an output buffer. The first latch sequentially stores first line data in response to a first sampling signal and outputs the stored data in parallel. The second latch sequentially stores second line data in response to a second sampling signal and outputs the stored data in parallel. The digital-to-analog converter converts the parallel data provided from one of the first and second latches to data voltages. The output buffer outputs the data voltages in response to a delay clock.
Abstract:
A backlight unit includes: a light source configured to emit light based on a driving current; and a backlight controller receiving a digital dimming signal that defines a length of an output period of the driving current from a pulse width modulator and configured to, when a duty ratio of the driving current is less than a reference duty ratio, modulates the duty ratio of the driving current so that the duty ratio of the driving current is equal to or greater than the reference duty ratio and decrease a duty ratio of the digital dimming signal.
Abstract:
Provided is a data driver including a digital to analog converter configured to convert image signal data into a plurality of data voltages, and an output buffer unit including a plurality of channels for outputting the plurality of data voltages. The output buffer unit includes a plurality of output blocks. Each output block includes one or more channels. Data voltages outputted from a first output block among the plurality of output blocks are delayed with a first time difference. Data voltages outputted from a second output block among the plurality of output blocks are delayed with a second time difference which is different from the first time difference.
Abstract:
A display apparatus includes a display panel, a data driver, a power voltage generator, a driving controller and a timing compensator. The display panel displays an image based on input image data. The data driver outputs a data voltage to the display panel. The power voltage generator outputs a data power voltage to the data driver. The driving controller controls a driving timing of the data driver. The timing compensator changes an output timing of the data voltage of the data driver when a feedback data power voltage is less than a reference data power voltage at a start point of an active period.
Abstract:
A backlight unit includes a light source part including a light-emitting diode array, a DC/DC converter, a driving current controller, and a reference voltage variable part. The backlight unit is operated in a first mode or a second mode. The driving current controller controls a driving current flowing through the light-emitting diode array to have a first current level during the first mode and controls the driving current flowing through the light-emitting diode array to have a second current level during the second mode. The reference voltage variable part applies a first reference voltage to the driving current controller during the first mode and applies a second reference voltage to the driving current controller during the second mode.
Abstract:
A display device includes a display panel, a source driver, and an alignment detection circuit. The display panel includes data lines and pads connected to the data lines. The source driver includes output lines connected to the pads to supply a data signal, and a detection circuit to selectively connect a first detection line supplied with a first detection voltage and a second detection line supplied with a second detection voltage to the output lines. The alignment detection circuit includes a detection capacitor connected between the first detection line and the second detection line, and a voltage detection circuit connected to one end of the detection capacitor to detect a voltage of the detection capacitor. The detection circuit connects a (2n−1)-th output line of the output lines to the first detection line, and connects a (2n)-th output line of the output lines to the second detection line.