Abstract:
A DC to DC converter includes: an input voltage source; an inductor connected to the input voltage source; a diode connected to the inductor; a capacitor connected to the diode; a plurality of switching elements connected to a node between the inductor and the diode in a parallel connection; and a controller configured to set duty ratios of currents flowing through the switching elements such that the duty ratios of the currents flowing through the switching elements are equal to each other.
Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.
Abstract:
A power voltage generating circuit includes an input capacitor including a first end connected to an input node, and a second end connected to a ground, an inductor, an input switching element connected between the input node and a first end of the inductor, a control switching element including a control electrode connected to a switching controller configured to apply a switching control signal, an input electrode connected to a resistor, and an output electrode connected to a second end of the inductor, a diode including a first electrode connected to the second end of the inductor, and a second electrode connected to an output node, and an output capacitor connected between the output node and the ground, wherein the input switching element is configured to be turned off when a short circuit of a load connected to the output node is detected in a monitoring period.
Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.
Abstract:
A signal smoothing device includes: a plurality of capacitors connected in parallel between a conductive line and ground; a plurality of switches connected in series between the conductive line and each capacitor; and a switch selector configured to select one of the switches and to turn on the selected switch, based on a signal applied to the conductive line.
Abstract:
A display device includes a driving controller sensing a pattern of first image signals from a source external to the driving controller and outputting a compensation selection signal corresponding to the sensed pattern. A voltage generator generates a driving power voltage in response to the compensation selection signal. The voltage generator includes a power converter generating the driving power voltage in response to a power control signal, a comparator comparing the driving power voltage with a reference voltage to output a feedback signal to a first node, and a compensation circuit including a plurality of compensation units. A selected compensation unit is connected to the first node, and a power control circuit outputs the power control signal in response to the feedback signal. The slew rate of the feedback signal may be controlled by a compensation circuit to remove a ripple component from the driving power voltage.
Abstract:
A voltage generation circuit of a display device includes an over-current detection circuit that provides a driving voltage to a voltage terminal and outputs an over-current detection signal. The over-current detection circuit includes a current detector that outputs a detection signal at a first level when a voltage corresponding to an output current flowing through the voltage terminal during a blank period, in which a blank signal is activated, is lower than a first reference level or higher than a second reference level, a glitch remover that outputs a noise detection signal when a time period in which the detection signal is maintained at the first level is longer than a reference maintenance time, and a noise filter that activates the over-current detection signal when the noise detection signal is activated at least twice during a predetermined time period.
Abstract:
A cradle according to an embodiment may include a housing to be coupled to display modules having various sizes and a light source driver inside the housing. The light source driver may generate a first driving voltage and a second driving voltage to be provided to a light source of the display module coupled to the housing. When the display module has a first size, the light source driver may supply only the first driving voltage to the display module. When the display module has a second size, larger than the first size, the light source driver outputs both the first and second driving voltages to the display module.
Abstract:
A backlight unit includes: a light source configured to emit light based on a driving current; and a backlight controller receiving a digital dimming signal that defines a length of an output period of the driving current from a pulse width modulator and configured to, when a duty ratio of the driving current is less than a reference duty ratio, modulates the duty ratio of the driving current so that the duty ratio of the driving current is equal to or greater than the reference duty ratio and decrease a duty ratio of the digital dimming signal.
Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.