Abstract:
A power management circuit of a display device includes a voltage information storage comprising a first and second bank storing first and second voltage information corresponding to first and second voltage levels different from each other, a bank select pin receiving a bank select signal, a voltage information selecting circuit selectively outputting the first voltage information stored in the first bank or the second voltage information stored in the second bank in response to the bank select signal received through the bank select pin, and a DC-DC converter generating panel driving voltages having the first voltage levels based on the first voltage information when the first voltage information is output from the voltage information selecting circuit, and generating the panel driving voltages having the second voltage levels based on the second voltage information when the second voltage information is output from the voltage information selecting circuit.
Abstract:
A backlight unit includes: a power converter to generate a light-source power voltage according to a voltage control signal; an LED string connected to the light-source power voltage; a short-circuit detector to receive the light-source power voltage and to enable a short-circuit signal; and a light source controller to generate the voltage control signal to interrupt generation of the light-source power voltage when the short-circuit signal is enabled. The short-circuit detector includes: a voltage divider to divide the light-source power voltage to output a detection voltage; and a comparing circuit to generate a reference voltage corresponding to a voltage level of the detection voltage, to compare the reference voltage with the detection voltage, and to enable the short-circuit signal in accordance with a result of the comparison.
Abstract:
A backlight device includes an input line connected to an anode of a light source unit; an output line connected to a cathode of the light source unit; a resistance line connected between the output line and a ground and disposed in a pattern having a predetermined width and length to have a predetermined resistance; a sensing line connected to the output line; and a controller for measuring a balance voltage of the output line through the sensing line and controls an amount of current supplied to the input line based on the balance voltage, in which when a reference current is supplied to the input line, the balance voltage of the output line becomes a predetermined reference voltage due to the predetermined resistance.
Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.
Abstract:
A display device includes a display panel including a plurality of pixels, a controller which generates a gate reference signal, a gate control circuit which outputs a gate driving signal based on the gate reference signal, and a gate driving circuit which provides gate signals to the plurality of pixels based on the gate driving signal. The gate control circuit includes a protection enable circuit which detects a first period of the gate reference signal, determines whether the period of the gate reference signal is changed, and generates a protection enable signal when the first period of the gate reference signal is not changed, and an over-current protection circuit which generates an over-current occurrence signal by detecting an over-current of the gate driving signal, and stops outputting the gate driving signal based on the over-current occurrence signal and the protection enable signal.
Abstract:
The current disclosure relates to a display device including a display panel including a plurality of pixels, and a plurality of gate lines and a plurality of data lines connected to the plurality of pixels, a gate driver applying a gate signal to the plurality of gate lines, a data driver applying a data signal to the plurality of data lines, and a voltage provider configured to generate a gate-on voltage that is gradually changed in one frame and a kickback voltage that is gradually changed in one frame to transmit the gate-on voltage and the kickback voltage to the gate driver.
Abstract:
A display device includes a display panel including a plurality of pixels, a data driver configured to provide a data signal to the pixels, a scan driver configured to provide a scan signal to the pixels, a power controller configured to provide a driving voltage to the data driver and the scan driver, and a timing controller configured to generate a data control signal that controls the data driver, a scan control signal that controls the scan driver, and a power control signal that controls the power controller based on an image data and a control signal. The power controller determines a transient time that changes the driving voltage from a first voltage level to a second voltage level based on the power control signal.
Abstract:
A power voltage generating circuit includes an input capacitor including a first end connected to an input node, and a second end connected to a ground, an inductor, an input switching element connected between the input node and a first end of the inductor, a control switching element including a control electrode connected to a switching controller configured to apply a switching control signal, an input electrode connected to a resistor, and an output electrode connected to a second end of the inductor, a diode including a first electrode connected to the second end of the inductor, and a second electrode connected to an output node, and an output capacitor connected between the output node and the ground, wherein the input switching element is configured to be turned off when a short circuit of a load connected to the output node is detected in a monitoring period.
Abstract:
Provided is a display device. According to one embodiment, the display device includes: a backlight unit with a plurality of light emitting strings including at least one light emitting diode; and a display panel displaying an image using light outputted from the backlight unit, wherein the backlight unit includes: a light source unit including the plurality of light emitting strings and a plurality of photo transistors controlling the plurality of light emitting strings; a DC-DC converter outputting the driving voltage to the light source unit; and a driving control unit applying activated gate voltages to turn on the plurality of photo transistors and detecting driving time differences between an output time for outputting the driving voltage and applying times for applying the gate voltages.
Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.