Abstract:
A light unit includes a DC/DC converter. A plurality of unit light emitting diode columns receive a voltage applied from the DC/DC converter. A plurality of transistors, respectively, are connected to the plurality of unit light emitting diode columns. A current deviation compensating unit compensates for deviations between currents respectively flowing through the plurality of unit light emitting diode columns by a pulse current width modulation average current control method. A connection switch sequentially connects the current deviation compensating unit with the plurality of transistors. A resistor is connected to output terminals of the plurality of transistors. A switch controller controls connection between the connection switch and the current deviation compensating unit based on a signal applied to the resistor.
Abstract:
An aging system includes panel groups each including display panels, an auxiliary board including the panel groups disposed thereon, and an aging device for supplying aging signals to the display panels through line boards to perform aging on the display panels, where the aging device supplies switch signals respectively to the display panels through the line boards, where each of the display panels includes a switch unit for supplying the aging signal to a pixel unit according to the switch signal.
Abstract:
A backlight unit may include a wall and a plurality of light sources. The wall may have a side in a cross-sectional view of the backlight unit. The side may have a curved shape in the cross-sectional view of the backlight unit. The plurality light sources may include a first light source and a second light source. The second light source may be positioned farther away from a center portion of the wall than the first light source in the cross-sectional view of the backlight unit. A minimum distance between the second light source and the side may be greater than a minimum distance between the first light source and the side in the cross-sectional view of the backlight unit.
Abstract:
A backlight unit includes a light source part including a light-emitting diode array, a DC/DC converter, a driving current controller, and a reference voltage variable part. The backlight unit is operated in a first mode or a second mode. The driving current controller controls a driving current flowing through the light-emitting diode array to have a first current level during the first mode and controls the driving current flowing through the light-emitting diode array to have a second current level during the second mode. The reference voltage variable part applies a first reference voltage to the driving current controller during the first mode and applies a second reference voltage to the driving current controller during the second mode.
Abstract:
A backlight unit including, a controller configured to generate a control signal, a power converter configured generate a light-source voltage in response to the control signal, and at least one light emitting diode string connected between a first node and a second node and supplied with the light-source voltage from the first node, wherein the controller includes a current controller configured to adjust a current flow through the light emitting diode string, and an overvoltage controller connected between the light emitting diode string and the current controller, including a passive element, wherein the overvoltage controller is configured to connect the passive element between the second node and the current controller when a voltage of the second node of the light emitting diode is higher than a reference voltage.