Abstract:
In one example, a circuit includes a first node to receive an analog signal that is an amplitude modulated radio-frequency signal for a digital signal. An output node is configured to provide an output signal indicative of rising and falling edges of an envelope of the analog signal. The rising and falling edges are indicative of rising and falling edges of the digital signal. A first current path is disposed between a power supply node and the first node. The first current path includes a first transistor coupled between the first node and a first bias source. The first bias source is coupled between the first transistor and the power supply node. The output node is coupled to a first intermediate node in the first current path between the transistor and the first bias source. A control terminal of the first transistor is coupled to the output node via a feedback network.
Abstract:
A MEMS device includes a fixed supporting body forming a cavity, a mobile element suspended over the cavity, and an elastic element arranged between the fixed supporting body and the mobile element. First, second, third, and fourth piezoelectric elements are mechanically coupled to the elastic element, which has a shape symmetrical with respect to a direction. The first and second piezoelectric elements are arranged symmetrically with respect to the third and fourth piezoelectric elements, respectively. The first and fourth piezoelectric elements are configured to receive a first control signal, whereas the second and third piezoelectric elements are configured to receive a second control signal, which is in phase opposition with respect to the first control signal so that the first, second, third, and fourth piezoelectric elements deform the elastic element, with consequent rotation of the mobile element about the direction.
Abstract:
A MEMS device includes a fixed supporting body forming a cavity, a mobile element suspended over the cavity, and an elastic element arranged between the fixed supporting body and the mobile element. First, second, third, and fourth piezoelectric elements are mechanically coupled to the elastic element, which has a shape symmetrical with respect to a direction. The first and second piezoelectric elements are arranged symmetrically with respect to the third and fourth piezoelectric elements, respectively. The first and fourth piezoelectric elements are configured to receive a first control signal, whereas the second and third piezoelectric elements are configured to receive a second control signal, which is in phase opposition with respect to the first control signal so that the first, second, third, and fourth piezoelectric elements deform the elastic element, with consequent rotation of the mobile element about the direction.
Abstract:
An energy-harvesting system includes a transducer to convert environmental energy into a harvesting electrical signal. A storage element stores electrical energy derived from conversion of the harvested environmental energy. A harvesting interface supplies an electrical charging signal to the storage element. The harvesting interface is selectively connected to the storage element in response to a control signal. The control signal causes the connection when the harvesting electrical signal exceeds a threshold. Conversely, the control signal causes the disconnection when the harvesting electrical signal is less than the threshold.
Abstract:
An inertial sensor having a body with an excitation coil and a first sensing coil extending along a first axis. A suspended mass includes a magnetic-field concentrator, in a position corresponding to the excitation coil, and configured for displacing by inertia in a plane along the first axis. A supply and sensing circuit is electrically coupled to the excitation coil and to the first sensing coil, and is configured for generating a time-variable flow of electric current that flows in the excitation coil so as to generate a magnetic field that interacts with the magnetic-field concentrator to induce a voltage/current in the sensing coil. The integrated circuit is configured for measuring a value of the voltage/current induced in the first sensing coil so as to detect a quantity associated to the displacement of the suspended mass along the first axis.
Abstract:
A sensor for pressure measurement may include a fabric support, an electrically conductive structure including tracks on the fabric support having resistance variations in response to deformations thereof, and a processor coupled to the electrically conductive structure and configured to sense resistance values of respective tracks of the electrically conductive structure and to provide a signal representative of a pressure difference across opposite faces of the fabric support.
Abstract:
The current technique provides an unmanned vehicle that is capable of travelling in the air, on the ground and/or in the water. The driving force of the unmanned vehicle is provided by at least one propelling module that includes a motor, a shaft and a propeller. The propelling module is coupled to a chassis. The chassis includes one or more support elements that each couples to one or more aileron member. An aileron member is configured to tilt with or about the support element to change fluid flux about the aileron member and thus change a position of the propelling force.
Abstract:
An electronic converter has first and second input terminals, first and second output terminals, a current regulator circuit arranged between the first input terminal and an intermediate node, and input capacitor arranged between the intermediate node and the second input terminal, and an output capacitor. A control circuit block is configured to sense an input voltage, compare the regulated voltage to a reference value and generate a first signal, compare the input voltage to a lower threshold and an upper threshold and generate a second signal, switch the electronic converter between an active mode and an idle mode as a function of the first signal, and switch the electronic converter between a recharge phase and a switching phase as a function of the second signal when the electronic converter is in the active mode.
Abstract:
A programmable-gain amplifier includes: two complementary cross-coupled transistor pairs mutually coupled with each transistor in one pair having a current flow path cascaded with a current flow path of a respective one of the transistors in the other pair. First and second coupling points are formed between the pairs; with first and second sampling capacitors coupled thereto. First and second input stages have input terminals to input signals for sampling by the first and second sampling capacitors. Switching means couple the first and second input stages to the sampling capacitors so the input signals are sampled as sampled signals on the sampling capacitors. The switching means energizes the complementary cross-coupled transistor pairs so the signals sampled on the sampling capacitors undergo negative resistance regeneration growing exponentially over time to thereby provide an exponential amplifier gain.
Abstract:
A package for a device to be inserted into a solid structure may include a building material that includes particles of one of micrometric and sub-micrometric dimensions. The device may include an integrated detection module having at least one integrated sensor and the package arranged to coat at least one portion of the device including the integrated detection module. A method aspect includes a method of manufacturing the device. A system aspect is for monitoring parameters in a solid structure that includes the device.