摘要:
A packaging material for a power storage device includes a heat resistant resin layer 2 as an outer layer, a sealant layer 3 as an inner layer, and a metal foil layer 4 arranged between these layers. The sealant layer 3 is composed of one layer or a plurality of layers. The innermost layer 7 of the sealant layer contains a random copolymer containing propylene as a copolymerization component and another copolymerization component other than propylene, a roughening material, and a lubricant. The roughening material is composed of particles containing a thermoplastic resin. The center line average roughness Ra of the surface 7a of the innermost layer 7 is 0.05 μm to 1 μm. It can provide a packaging material for a power storage device which is excellent in formability and hard to generate white powder on the surface.
摘要:
A sealant film has a structure made of a laminated body of two or more layers. The laminated body includes a first resin layer 7 containing 50 mass % or more of a random copolymer containing propylene and a copolymer component other than propylene as copolymer components, and a second resin layer 8 formed by a mixed resin containing a first elastomer-modified olefin based resin having a melting point of 155° C. or higher and a crystal melting energy of 50 J/g or more, and a second elastomer-modified olefin based resin having a melting point is 135° C. or higher and a crystal melting energy of 30 J/g or less. With this structure, when the inner pressure of a power storage device is excessively increased, breakage (separation) occurs inside the sealant layer, causing gas-releasing, which in turn can prevent bursting of the packaging material due to the inner pressure increase.
摘要:
The packaging material includes a heat-resistant resin layer 2 as an outer side layer, a heat-fusible resin layer 3 as an inner side layer, and a metal foil layer 4 arranged between these layers. The heat-resistant resin layer 2 is made of a heat-resistant resin film having a hot water shrinkage rate of 1.5% to 12% and the heat-resistant resin layer 2 and the metal foil layer 4 are adhered via an outer side adhesive layer 5. The adhesive layer 5 is formed by an urethane adhesive agent containing a polyol, a polyfunctional isocyanate compound, and an aliphatic compound containing a plurality of functional groups capable of reacting with an isocyanate group in one molecule. With this, a packaging material can be provided in which excellent formability can be secured and delamination can be sufficiently suppressed without causing pinholes, etc., even when deep depth drawing is performed.
摘要:
A molding packaging material is capable of ensuring good slipperiness to secure good formability when molding the molding packaging material and is less likely to cause white powder on a surface of the packaging material. The molding packaging material includes a substrate layer as an outer layer, a heat fusible resin layer as an inner layer, and a metal foil layer arranged between the two layers. The heat fusible resin layer is composed of a single layer or a multi-layer. The innermost layer of the heat fusible resin layer is made of a resin composition containing a heat fusible resin, an anti-blocking agent, a slip agent, and a fluoropolymer-based lubricant.
摘要:
Provided is a packaging material for a power storage device capable of securing excellent formability without causing pinholes and/or cracks even when deep depth forming is performed and also capable of sufficiently preventing delamination even when deep depth forming is performed or even when it is used under severe environments, such as, e.g., high temperature and high humidity.[Solving means] The packaging material for a power storage device has a configuration including a heat resistant resin layer 2 serving as an outer layer, a heat fusible resin layer 3 serving as an inner layer, and a metal foil layer 4 disposed between both the two layers. The heat resistant resin layer 2 is composed of a heat resistant resin film with a hot water shrinkage percentage of 1.5% to 12%. The heat resistant resin layer 2 and the metal foil layer 4 are bonded via an outer adhesive layer 5 composed of a cured film of an electron beam curable resin composition.
摘要:
An outer casing material for a battery 4 is provided, wherein an outer layer 11, a metal foil layer 10 and an inner layer 8 are laminated via an adhesive layer 5; the inner layer 8 comprises a sealant layer 8b and a base material layer 8a; the sealant layer 8b is made from a propylene-ethylene random copolymer wherein a melt flow rate at 230° C. thereof is in a range of 3 to 30 g/10 minutes; the base material layer 8a is made of a resin composition wherein a melt flow rate at 230° C. thereof is in a range of 0.1 to 15 g/10 minutes, xylene-soluble component Xs thereof satisfies the predetermined conditions, and the resin composition comprises 50 to 80% by mass of a propylene component (A) and 50 to 20% by mass of a copolymer component (B) which is an elastomer of a copolymer of propylene and ethylene and/or α-olefin having 4 to 12 carbons and includes 50 to 85% by mass of a polymerization unit originated from propylene.
摘要:
Provided is a molding packaging material which is capable of ensuring good slipperiness to secure good formability when molding the molding packaging material and is less likely to cause white powder on a surface of the packaging material. The molding packaging material includes a substrate layer 2 as an outer layer, a heat fusible resin layer 3 as an inner layer, and a metal foil layer 4 arranged between the two layers. The heat fusible resin layer 3 is composed of a single layer or a multi-layer. The innermost layer of the heat fusible resin layer 3 is made of a resin composition containing a heat fusible resin, an anti-blocking agent, a slip agent, and a fluoropolymer-based lubricant.
摘要:
The packaging material includes a heat-resistant resin layer 2 as an outer side layer, a heat-fusible resin layer 3 as an inner side layer, and a metal foil layer 4 arranged between these layers. The heat-resistant resin layer 2 is made of a heat-resistant resin film having a hot water shrinkage rate of 1.5% to 12% and the heat-resistant resin layer 2 and the metal foil layer 4 are adhered via an outer side adhesive layer 5. The adhesive layer 5 is formed by an urethane adhesive agent containing a polyol, a polyfunctional isocyanate compound, and an aliphatic compound containing a plurality of functional groups capable of reacting with an isocyanate group in one molecule. With this, a packaging material can be provided in which excellent formability can be secured and delamination can be sufficiently suppressed without causing pinholes, etc., even when deep depth drawing is performed.
摘要:
A sealant film has a structure made of a laminated body of two or more layers. The laminated body includes a first resin layer 7 containing 50 mass % or more of a random copolymer containing propylene and a copolymer component other than propylene as copolymer components, and a second resin layer 8 formed by a mixed resin containing a first elastomer-modified olefin based resin having a crystallization temperature of 105° C. or higher and a crystallization energy of 50 J/g or more, and a second elastomer-modified olefin based resin having a crystallization temperature is 85° C. or higher and a crystallization energy of 30 J/g or less. With this structure, when the inner pressure of a power storage device is excessively increased, breakage (separation) occurs inside the sealant layer, causing gas-releasing, which in turn can prevent bursting of the packaging material due to the inner pressure increase.
摘要:
An armouring material for use in an air secondary battery, including: an armouring sheet (2) constituted by laminating an outer layer (21) including heat-resistant resin film, a metal foil layer (22), and an inner layer (23) including a thermoplastic resin film, being equipped with an opening part (12) for taking oxygen in, perforating through the outer layer, the metal foil layer and the inner layer, and an oxygen-permeable membrane (3) being joined to the inner layer side in an opening part periphery (12a) and covering the opening part. The oxygen-permeable membrane is constituted from a porous fluororesin, a joining surface of outer periphery (3a) of the oxygen-permeable membrane is equipped with a primer layer (3c), and an adhesive layer (5) is provided at least in a space between the primer layer and the inner layer of the armouring sheet, to adhere the oxygen-permeable membrane to the armouring sheet.