摘要:
An ultrasonic sensor includes a vibration plate, a first electrode, a piezoelectric body, and a second electrode. The first electrode is laminated on the vibration plate, that has a length along a surface of the vibration plate in a first direction, and that has a width Wbe along the surface of the vibration plate in a second direction that is orthogonal to the first direction. The width Wbe is not more than the length. The piezoelectric body is laminated on the first electrode and has a width Wpz in the second direction. The second electrode is laminated on the piezoelectric body. A ratio Wbe/Wpz between the width Wbe of the first electrode and the width Wpz of the piezoelectric body is not less than 0.1 and not more than 0.8.
摘要:
A liquid-ejecting head includes a pressure-generating chamber communicating with a nozzle opening, and a piezoelectric element. The piezoelectric layer contains a perovskite complex oxide containing Bi, La, Fe, and Mn and is ferroelectric.
摘要:
A piezoelectric element includes a piezoelectric layer and electrodes provided to the piezoelectric layer. The piezoelectric layer consists of a complex oxide containing bismuth, cerium, iron and cobalt and the molar ratio of cobalt to the total of iron and cobalt is 0.125 or more and 0.875 or less.
摘要:
In a method of controlling a liquid ejecting apparatus, where the liquid ejecting apparatus includes a pressure chamber that communicates with a nozzle that ejects a liquid, a drive element that changes a pressure of the liquid in the pressure chamber, and a drive circuit that supplies the drive element with an ejection pulse that generates a change in the pressure that ejects the liquid from the nozzle, the method includes specifying a viscosity of the liquid in the nozzle and a surface tension of the liquid in the nozzle from a residual vibration when the pressure of the liquid in the pressure chamber is changed, and controlling a waveform of the ejection pulse according to the viscosity and the surface tension.
摘要:
A liquid ejecting apparatus is provided comprising: a liquid ejecting head; and a controller. The liquid ejecting head including: a nozzle from which a liquid is ejected; a first communication passage that is in communication with the first nozzle; a first pressure compartment; a first drive element that changes a pressure of the first pressure compartment; a first passage that connects the first pressure compartment and the first communication passage; a second pressure compartment; a second drive element that changes a pressure of the second pressure compartment; a second passage that connects the second pressure compartment and the first communication passage. The controller performs a first mode and a second mode, the first mode being a mode in which liquid flows from the first pressure compartment through the first communication passage to the nozzle, and liquid flows the second pressure compartment through the second communication passage to the nozzle, and, the second mode being a mode in which liquid flows from the first pressure compartment through the first communication passage to the nozzle, and liquid flows from the nozzle through the second communication passage to the second pressure compartment.
摘要:
Provided is a liquid ejecting head that ejects a liquid in a pressure chamber by a piezoelectric device, the piezoelectric device including a vibration plate, a piezoelectric layer containing lead, a first electrode provided between the vibration plate and the piezoelectric layer, and a second electrode provided on a side opposite to a side of the first electrode as viewed from the piezoelectric layer. The piezoelectric layer is preferentially oriented in a (100) plane, a lattice constant c defined by a crystal plane of the piezoelectric layer parallel to a film surface of the piezoelectric layer and a lattice constant a defined by a crystal plane perpendicular to the film surface satisfy 0.9945≤c/a≤1.012, and the thickness of the piezoelectric device is twice or more the thickness t (t
摘要:
A liquid-ejecting head includes a pressure-generating chamber communicating with a nozzle opening, and a piezoelectric element. The piezoelectric element has piezoelectric layer contains a perovskite complex oxide containing Bi, La, Fe, and Mn and can undergo electric-field-induced phase transition.
摘要:
A piezoelectric element including a piezoelectric layer having a perovskite structure including lead, zirconium, and titanium, and an electrode provided on the piezoelectric layer is provided. In the piezoelectric layer, in a range of 50 nm or smaller from an interface between the piezoelectric layer and the electrode in a thickness direction, a ratio c/a of a lattice spacing a in a direction perpendicular to the thickness direction and a lattice spacing c in the thickness direction satisfies 0.986≤c/a≤1.014.
摘要:
A piezoelectric element includes a first electrode disposed over a substrate, an orientation control layer disposed over the first electrode and containing titanium, a piezoelectric layer disposed over the orientation control layer and having a perovskite crystal structure, and a second electrode disposed over the piezoelectric layer. The orientation control layer has a thickness in the range of 5.0 nm to 22.0 nm.
摘要:
An ultrasonic device includes: a substrate provided with a first opening and a second opening; a support film that is provided on the substrate and blocks the first opening and the second opening; a transmitting piezoelectric film that is provided on the support film at a position which overlaps the first opening when viewed in a thickness direction of the substrate and is interposed between a pair of electrodes in the thickness direction of the substrate; and a receiving piezoelectric film that is provided on the support film at a position which overlaps the second opening when viewed in the thickness direction of the substrate and is interposed between a pair of electrodes in the thickness direction of the substrate. In the thickness direction of the substrate, a thickness dimension of the transmitting piezoelectric film is smaller than a thickness dimension of the receiving piezoelectric film.