Abstract:
Systems and methods for producing olefins and/or aromatics are disclosed. Methods disclosed includes thermal hydro-processing of crude oils and/or heavy oils and/or residues, in a thermal hydro-processing unit, to produce intermediate products, which can then be used to make valuable chemicals such as olefins and aromatics.
Abstract:
The present invention relates to an integrated process to convert crude oil into petrochemical products comprising crude oil distillation, aromatic ring opening, and olefins synthesis, which process comprises subjecting a hydrocarbon feed to aromatic ring opening to produce LPG and subjecting the LPG produced in the integrated process to olefins synthesis. Furthermore, the present invention relates to a process installation to convert crude oil into petrochemical products comprising a crude distillation unit comprising an inlet for crude oil and at least one outlet for kerosene and/or gasoil; an aromatic ring opening unit comprising an inlet for a hydrocarbon feed to aromatic ring opening and an outlet for LPG; and a unit for the olefins synthesis comprising an inlet for LPG produced by the integrated petrochemical process installation and an outlet for olefins. The hydrocarbon feed subjected to aromatic ring opening comprises kerosene and/or gasoil produced by crude oil distillation in the process; and refinery unit-derived middle-distillate produced in the process. The process and the process installation of the present invention have an increased production of petrochemicals at the expense of the production of fuels and an improved propylene yield.
Abstract:
The present invention relates to a process for converting a hydrocarbon feedstock into olefins and preferably also into BTX, said converting process comprising the following steps of: feeding a hydrocarbon feed-stock to a first hydrocracking unit, feeding the effluent from said first hydrocracking unit to a first separation section, separating said effluent in said first separation section feeding at least one stream to a dehydrogenation unit, and feeding the effluent from said at least one dehydrogenation unit to a second separation section.
Abstract:
A process for hydrocracking of a hydrocarbon stream includes contacting the hydrocarbon stream with a hydroprocessing catalyst in the presence of hydrogen to yield a hydrocarbon product which meets steam cracker requirements for boiling end point, and in additional embodiments, chloride content and olefin content.
Abstract:
Systems and processes for producing olefins and aromatics. A process can include contacting a first hydrocarbon feed with a catalyst and a hydrogen source under conditions sufficient to produce a used catalyst and an intermediate stream containing olefins and aromatics, and contacting the used catalyst with the intermediate stream and a coke precursor feed to produce a spent coked catalyst and a products stream comprising additional olefins and aromatics.
Abstract:
The present invention relates to process for cracking a hydrocarbon feedstock in a steam cracker unit, comprising the following steps of: feeding a hydrocarbon feedstock to a first hydrocracking unit, feeding the hydrocarbon feedstock thus cracked to a separation unit for obtaining a stream high in paraffins and naphtenes, a stream high in heavy aromatics and a stream high in mono-aromatics feeding the stream high in paraffins and naphtenes to a second hydrocracking unit, wherein the process conditions in the first hydrocracking unit differ from the process conditions in the second hydrocracking unit, separating the stream thus hydrocracked in the second hydrocracking unit in a high content aromatics stream and gaseous stream comprising C2-C4 paraffins, hydrogen and methane, feeding the gaseous stream to a steam cracker unit.
Abstract:
A process for producing olefins and aromatics comprising converting plastics to a hydrocarbon product comprising a gas phase and a liquid phase in a pyrolysis unit; separating the hydrocarbon product into a hydrocarbon gas stream comprising the gas phase and a hydrocarbon liquid stream comprising the liquid phase; feeding the hydrocarbon gas stream to a gas steam cracker to produce a gas steam cracker product comprising olefins, wherein an olefins amount in the gas steam cracker product is greater than in the hydrocarbon gas stream; separating the hydrocarbon liquid stream into a first fraction (b.p. 300° C.); feeding the first fraction to a liquid steam cracker to produce a liquid steam cracker product comprising olefins and aromatics, wherein an olefins amount in the liquid steam cracker product is greater than in the first fraction; and recycling the second fraction to the pyrolysis unit.
Abstract:
The present invention relates to an integrated process to convert crude oil into petrochemical products comprising crude oil distillation, aromatic ring opening, and olefins synthesis, which process comprises subjecting a hydrocarbon feed to aromatic ring opening to produce LPG and subjecting the LPG produced in the integrated process to olefins synthesis. Furthermore, the present invention relates to a process installation to convert crude oil into petrochemical products comprising a crude distillation unit comprising an inlet for crude oil and at least one outlet for kerosene and/or gasoil; an aromatic ring opening unit comprising an inlet for a hydrocarbon feed to aromatic ring opening and an outlet for LPG; and a unit for the olefins synthesis comprising an inlet for LPG produced by the integrated petrochemical process installation and an outlet for olefins. The hydrocarbon feed subjected to aromatic ring opening comprises kerosene and/or gasoil produced by crude oil distillation in the process; and refinery unit-derived middle-distillate produced in the process. The process and the process installation of the present invention have an increased production of petrochemicals at the expense of the production of fuels and an improved propylene yield.
Abstract:
A robust integrated process for the conversion of waste plastics to high value products. The robust integrated process allows for operation with a single hydroprocessing reactor which provides simultaneous hydrogenation, dechlorination, and hydrocracking of components of a hydrocarbon stream to specifications which meet steam cracker requirements, with the option to further dechlorinate the treated hydrocarbon stream in a polishing zone.
Abstract:
A polymer, methods of making the polymer, methods of recycling the polymer and compositions including the polymer are described. The polymer can contain repeating units of Formula (I), where n is 1 and denotes number of repeat units, X is an aliphatic group, and Z is an aliphatic hydro-carbon group having at least 45 carbon atoms, preferably 45 to 1,000 carbon atoms, and has a degree of saturation 98 to 100%. The polymer contains 0.01 to 40 ester groups per 1000 backbone carbon units and has a melt temperature (Tm) of 40° C. to 180° C. as measured by DSC at a heating rate of 10° C. per min.