Abstract:
A process for processing mixed plastics comprising simultaneous pyrolysis and dechlorination of the mixed plastics, the process comprising contacting the mixed plastics with a zeolitic catalyst in a pyrolysis unit to produce a hydrocarbon product comprising a gas phase and a liquid phase; and separating the hydrocarbon product into a hydrocarbon gas stream and a hydrocarbon liquid stream, wherein the hydrocarbon gas stream comprises at least a portion of the gas phase of the hydrocarbon product, wherein the hydrocarbon liquid stream comprises at least a portion of the liquid phase of the hydrocarbon product, wherein the hydrocarbon liquid stream comprises one or more chloride compounds in an amount of less than about 100 ppmw chloride, based on the total weight of the hydrocarbon liquid stream, and wherein the hydrocarbon liquid stream is characterized by a viscosity of less than about 400 cP at a temperature of 300° C.
Abstract:
A process for activating and maintaining a catalyst for use in hydrocracking a hydrocarbon stream includes continuously contacting a hydrocarbon stream with a hydroprocessing catalyst in the presence of hydrogen. Sulphides and chloride compounds in the hydrocarbon stream are used such that the hydroprocessing catalyst has the ability to hydrogenate, dechlorinate, and hydrocrack components of the hydrocarbon stream.
Abstract:
Systems and methods for producing olefins and/or aromatics are disclosed. Methods disclosed includes thermal hydro-processing of crude oils and/or heavy oils and/or residues, in a thermal hydro-processing unit, to produce intermediate products, which can then be used to make valuable chemicals such as olefins and aromatics.
Abstract:
A process for producing cumene comprising converting plastics to hydrocarbon liquid and pyrolysis gas; feeding hydrocarbon liquid to hydroprocessor to yield hydrocarbon product and first gas stream; feeding hydrocarbon product to reforming unit to produce reforming product, second gas stream, and hydrogen; separating reforming product into non-aromatics recycle stream and second aromatics stream (C6+ aromatics); recycling non-aromatics recycle stream to reforming unit; separating second aromatics stream into benzene, C7, C8, C9, C10, and C11+ aromatics; contacting C7, C9, and/or C10 aromatics with a disproportionation&transalkylation catalyst/H2 to yield benzene&xylenes; conveying C11+ aromatics to hydroprocessor; introducing pyrolysis gas, first and/or second gas stream to first separator to produce first propylene stream, first C2&C4 unsaturated stream, and saturated gas (H2 and C1-4 saturated hydrocarbons); introducing first C2&C4 unsaturated stream to metathesis reactor to produce second propylene stream; and feeding benzene, and first and/or second propylene stream to alkylation unit to produce cumene.
Abstract:
A process for hydrocracking of a hydrocarbon stream includes contacting the hydrocarbon stream with a hydroprocessing catalyst in the presence of hydrogen to yield a hydrocarbon product which meets steam cracker requirements for boiling end point, and in additional embodiments, chloride content and olefin content.
Abstract:
Systems and methods for producing olefins and/or aromatics are disclosed. Methods disclosed includes aqua-processing hydro-processing of crude oils and/or heavy oils and/or residue, in an aqua-processing hydro-processing unit, to produce intermediate products, which can then be used to make valuable chemicals such as olefins and aromatics.
Abstract:
A process for hydrodealkylating a hydrocarbon stream comprising (a) contacting the hydrocarbon stream with a hydroprocessing catalyst in a hydroprocessing reactor in the presence of hydrogen to yield a hydrocarbon product, wherein the hydrocarbon stream contains C9+ aromatic hydrocarbons; and (b) recovering a treated hydrocarbon stream from the hydrocarbon product, wherein the treated hydrocarbon stream comprises C9+ aromatic hydrocarbons, wherein an amount of C9+ aromatic hydrocarbons in the treated hydrocarbon stream is less than an amount of C9+ aromatic hydrocarbons in the hydrocarbon stream due to hydrodealkylating of at least a portion of C9+ aromatic hydrocarbons from the hydrocarbon stream during the step (a) of contacting.
Abstract:
An integrated process for the conversion of waste plastics to high value products. The integrated process allows for operation with a hydroprocessing reactor which provides simultaneous hydrogenation, dechlorination, and hydrocracking of components of a hydrocarbon stream to specifications which meet steam cracker requirements.
Abstract:
Systems and processes for producing olefins and aromatics. A process can include contacting a first hydrocarbon feed with a catalyst and a hydrogen source under conditions sufficient to produce a used catalyst and an intermediate stream containing olefins and aromatics, and contacting the used catalyst with the intermediate stream and a coke precursor feed to produce a spent coked catalyst and a products stream comprising additional olefins and aromatics.
Abstract:
A process for producing olefins and aromatics comprising converting plastics to a hydrocarbon product comprising a gas phase and a liquid phase in a pyrolysis unit; separating the hydrocarbon product into a hydrocarbon gas stream comprising the gas phase and a hydrocarbon liquid stream comprising the liquid phase; feeding the hydrocarbon gas stream to a gas steam cracker to produce a gas steam cracker product comprising olefins, wherein an olefins amount in the gas steam cracker product is greater than in the hydrocarbon gas stream; separating the hydrocarbon liquid stream into a first fraction (b.p. 300° C.); feeding the first fraction to a liquid steam cracker to produce a liquid steam cracker product comprising olefins and aromatics, wherein an olefins amount in the liquid steam cracker product is greater than in the first fraction; and recycling the second fraction to the pyrolysis unit.