Abstract:
A method is proposed for controlling a through-connection clutch of a vehicle, in which an interlocking portion of the clutch is opened when the drive-train is virtually free from torque, a shifting operation is then carried out, and after the shifting operation the clutch is closed again. According to the invention, the torque transmitted by the interlocked connection in the clutch is influenced by controlling the motor in order to produce a torque-free condition at the interlocked connection in the clutch, in such manner that the interlocked connection is pre-stressed before the torque-free condition has been reached and separated immediately only when the torque-free condition is reached.
Abstract:
A through-connection clutch, for transferring torque between a motor and transmission of a vehicle, which has a friction clutch and a form-locking clutch. The form-locking clutch is disposed radially within the friction clutch, and the clutches can be actuated independently of each other. To minimize the required installation space, the through-connection clutch can be activated flexibly, but is still inexpensive to produce and ensures low-wear yet safe and comfortable torque transfer in a drive train of a vehicle. A pressure plate of the friction clutch and a form-locking element of the form-locking clutch are concentric, rotationally fixed together, and movable toward one another, and can be actuated via an actuation unit, which is rotationally decoupled from the pressure plate and the form-locking element. Depending on the operating situation, the friction clutch and/or the form-locking clutch is selectively activated one or more times.
Abstract:
A method for controlling and/or regulating a staring or maneuvering process in an automated transmission of a vehicle in which a required starting torque is provided by a starting clutch and a required braking torque is provided by a brake device. The required braking torque, during the starting or maneuvering process, is provided at least in part by at least a transmission brake.
Abstract:
The invention concerns a hydraulic or pneumatic control device for an automated shift transmission, comprising actuating devices with actuating cylinders (15, 16) having pressure spaces (19a, 19b; 20a, 20b), such that the pressure spaces (19a, 19b; 20a, 20b) of the actuating cylinders (15, 16) can be connected by a respective control valve (22a, 22b; 32a, 32b) to a pressure line (26) and the said pressure line (26) can be selectively connected to a main pressure line (8) or cut off therefrom by means of a main shut-off valve (45a). To improve the control characteristics and increase the operational reliability, at least one further main shut-off valve (45b) is arranged in parallel with the first main shut-off valve (45a) between the main pressure line (8) and the pressure line (26).
Abstract:
A method for establishing malfunctions of components of a motor vehicle power train as well as the reaction to the same. The power train has a drive motor and an automatic transmission with respectively allocated control devices, setting apparatus and sensors, and the transmission input shaft is allocated a torque sensor for recording the transmission input shaft. During operation of the motor vehicle, the functions of the control devices, the operating elements, the sensors and their data transmission apparatus as well as the measured values of the transmission input torque are recorded and checked for signs of malfunction. After recognizing such a malfunction, operations are conducted by means of which the motor vehicle can be further operated in an emergency type of operation or with the aid of which the driving operation can be safely ended.
Abstract:
A method for controlling operational sequencing of gears in an automatic transmission (102) which has been built in an auxiliary mode. In the case of such a shifting transmission it is possible that during the engagement of its transmission gear stage, impact noises or contact noises are present in the shifting procedure. This can occur by the generation of a tooth-on-tooth positioning between the toothing of a sliding collar (126) and the come-along toothing of an idler gear (130, 132). Provision is made for the control of the activation movement of the sliding collar (126) carried out in such a manner that an activation condition impact of the transmission parts, which are partakers in the shifting associated transmission part onto other transmission parts with the least possible impact force and/or with a least possible impact noise level.
Abstract:
A method is proposed for controlling a through-connection clutch of a vehicle, in which an interlocking portion of the clutch is opened when the drive-train is virtually free from torque, a shifting operation is then carried out, and after the shifting operation the clutch is closed again. According to the invention, the torque transmitted by the interlocked connection in the clutch is influenced by controlling the motor in order to produce a torque-free condition at the interlocked connection in the clutch, in such manner that the interlocked connection is pre-stressed before the torque-free condition has been reached and separated immediately only when the torque-free condition is reached.
Abstract:
A clutch system for producing and interrupting a force flow between the engine and transmission of a motor vehicle, with a clutch, which is disengaged unless actuated, and one or more valves, which regulate the flow of pressure medium and which are electrically actuated by a control and regulation unit. If there is electrical failure while driving and when a gear is engaged or when the vehicle is stationary, the engine is running and a transmission gear is engaged, unintended clutch engagement is prevented. The valves are designed such that if there is a failure of the voltage supply and consequently also of the actuation of the valves by the electronic control and regulation system, the operating condition of the clutch existing at the time of failure, namely the disengaged or engaged operating condition, remains as it is.
Abstract:
A device for supplying pressure from an energy storage device to a piston gear shifting actuator by way of a valve device is provided. A pressure regulating and/or control device is used to regulate and/or control the pressure applied to the piston actuator. The pressure regulating and/or control device regulates and/or controls the pressure according to at least one following quantity: temperature, in particular a transmission operating temperature, the load state of the motor vehicle provided with the transmission, and the slope of a surface along which the motor vehicle provided with the transmission runs.
Abstract:
A method for determining the position of a shifting element (11), for example of a sliding sleeve in an automatic transmission of a motor vehicle, with the element actuated by way an actuating element, for example comprising a shifting rod (8) and a shifting fork (10), via an operating element (1). From the actuating pressure and/or the shifting force of the operating element, deformation of the actuating element, for example the shifting rod (8) and/or the shifting fork (10), is determined which result in the position of the shifting element being determined with greater precision.