Abstract:
Disclosed is an integrated circuit module that includes a first die having a plurality of hot regions and at least one cool region when operating under normal conditions. The first die with a top surface includes at least one power amplifier that resides in the plurality of hot regions. The integrated circuit module also includes a second die. The second die has a bottom surface, which is adhered to the top surface of the first die, wherein any portion of the bottom surface of the second die that is adhered to the top surface of the first die resides exclusively on the at least one cool region. In at least one embodiment, the first die is an RF power amplifier die and the second die is a controller die having control circuitry configured to control the at least one power amplifier that is an RF power amplifier type.
Abstract:
An RF electronics module includes a grounding plate, a non-conductive substrate, a number of conductive vias, RF PA circuitry, and RF power detection circuitry. The non-conductive substrate is over the grounding plate. The conductive vias extend parallel to one another from a surface of the non-conductive substrate opposite the grounding plate through the non-conductive substrate to the grounding plate. The RF PA circuitry is coupled to the grounding plate through a first one of the conductive vias. The RF power detection circuitry is coupled to a second one of the conductive vias and configured to measure a signal induced in the second one of the conductive vias due to electromagnetic coupling with the first one of conductive vias. The first one of the conductive vias is adjacent to the second one of the conductive vias.
Abstract:
Disclosed is an integrated circuit module that includes a first die having a plurality of hot regions and at least one cool region when operating under normal conditions. The first die with a top surface includes at least one power amplifier that resides in the plurality of hot regions. The integrated circuit module also includes a second die. The second die has a bottom surface, which is adhered to the top surface of the first die, wherein any portion of the bottom surface of the second die that is adhered to the top surface of the first die resides exclusively on the at least one cool region. In at least one embodiment, the first die is an RF power amplifier die and the second die is a controller die having control circuitry configured to control the at least one power amplifier that is an RF power amplifier type.
Abstract:
An RF electronics module includes a grounding plate, a non-conductive substrate, a number of conductive vias, RF PA circuitry, and RF power detection circuitry. The non-conductive substrate is over the grounding plate. The conductive vias extend parallel to one another from a surface of the non-conductive substrate opposite the grounding plate through the non-conductive substrate to the grounding plate. The RF PA circuitry is coupled to the grounding plate through a first one of the conductive vias. The RF power detection circuitry is coupled to a second one of the conductive vias and configured to measure a signal induced in the second one of the conductive vias due to electromagnetic coupling with the first one of conductive vias. The first one of the conductive vias is adjacent to the second one of the conductive vias.