Abstract:
In certain aspects, a method is provided for measuring power using a resistive element coupled between a power amplifier and an antenna. The method includes squaring a voltage from a first terminal of the resistive element to obtain a first signal, squaring a voltage from a second terminal of the resistive element to obtain a second signal, and generating a measurement signal based on a difference between the first signal and the second signal. In some implementations, the resistive element is implemented with a power switch.
Abstract:
In certain aspects, a method is provided for measuring power using a resistive element coupled between a power amplifier and an antenna. The method includes squaring a voltage from a first terminal of the resistive element to obtain a first signal, squaring a voltage from a second terminal of the resistive element to obtain a second signal, and generating a measurement signal based on a difference between the first signal and the second signal. In some implementations, the resistive element is implemented with a power switch.
Abstract:
A power detector measures RF power delivered into a first load of uncertain impedance. A reference power meter measures power of a reference signal to a second load of known impedance. The reference power meter measures voltage across the second load; measures a current through the second load; and multiplies the measured voltage by the measured current to generate a reference power signal proportional to power delivered to the second load. A measurement power meter measures power of a signal to the first load. The measurement power meter measures voltage across the first load; measures current through the first load; and multiplies the measured voltage by the measured current to generate a measured power signal proportional to power delivered to the first load. The power detector includes a processor to calculate power delivered to the second load, and to generate a power delivered to the first load.
Abstract:
A remote radio frequency (RF) power sensing unit including a first module and a second module. The first module may be configured to generate a digital output representative of a power level of a radio frequency (RF) signal. The second module may be configured to convert the digital output of the first module to a digital signal communicating the power level and transmit the digital signal communicating the power level over a wireless communication channel using a wireless protocol.
Abstract:
A method is provided for dynamically determining measurement uncertainty (MU) of a measurement device for measuring a signal output by a device under test (DUT). The method includes storing characterized test data in a nonvolatile memory in the measurement device, the characterized test data being specific to the measurement device for a plurality of sources of uncertainty; receiving a parameter value of the DUT; measuring the signal output by the DUT and received by the measurement device; and calculating the measurement uncertainty of the measurement device for measuring the received signal using the stored characterized test data and the received parameter value of the DUT.
Abstract:
A power distribution unit (PDU) disposable in an electrical equipment rack. The PDU has a housing, a power input penetrating the housing, outlets in the housing, a processor disposed in the housing, voltage and current sensors, and a voltage calculation procedure communicable with the processor. The processor samples voltage and current waveforms and calculates RMS values and other power parameters. A method of managing electrical loads each drawing electrical power from a PDU includes repeatedly sampling voltage across and current flowing through each of the loads, calculating raw RMS values of voltage and current, and scaling the raw RMS values to obtain corrected RMS voltage and current values and other power parameters.
Abstract:
A power distribution unit (PDU) disposable in an electrical equipment rack. The PDU has a housing, a power input penetrating the housing, outlets in the housing, a processor disposed in the housing, voltage and current sensors, and a voltage calculation procedure communicable with the processor. The processor samples voltage and current waveforms and calculates RMS values and other power parameters. A method of managing electrical loads each drawing electrical power from a PDU includes repeatedly sampling voltage across and current flowing through each of the loads, calculating raw RMS values of voltage and current, and scaling the raw RMS values to obtain corrected RMS voltage and current values and other power parameters.
Abstract:
A system includes a first circuit and a second circuit. The first circuit includes a first MOS transistor having a gate and a drain. The first circuit is configured to receive a radio frequency (RF) signal at the gate of the first MOS transistor. The drain of the first MOS transistor is configured to output a first current that is proportional to the square of the input voltage of the RF signal while receiving the RF signal. The second circuit includes a second MOS transistor having a source configured to receive a first current from the first circuit. The second MOS transistor is biased in a triode region and has a channel resistance between the source and a drain. The second circuit is configured to output a voltage proportional to the value of the power of the RF signal received by the first circuit.
Abstract:
A temperature-compensated power detector for detecting variations in the power level of an RF signal. The temperature-compensated power detector includes a detector circuit and a temperature compensating circuit. The detector circuit detects the power level of an RF signal and provides an output voltage that corresponds to the power level of the RF signal. The temperature compensating circuit ensures that the output voltage of the temperature-compensated power detector is independent of changes in the temperature.
Abstract:
A system for detecting power output of a power amplifier includes a first power detector configured to detect a forward power output of a power amplifier, the first power detector configured to provide a first power detector output, and a second power detector configured to receive a collector parameter signal and detect a collector parameter therefrom, the second power detector also configured to provide a second power detector output.